首页> 外文期刊>Signal Processing, IET >Automatic ECG arrhythmias classification scheme based on the conjoint use of the multi-layer perceptron neural network and a new improved metaheuristic approach
【24h】

Automatic ECG arrhythmias classification scheme based on the conjoint use of the multi-layer perceptron neural network and a new improved metaheuristic approach

机译:基于多层感知器神经网络和改进的新启发式方法的联合使用的自动ECG心律失常分类方案

获取原文
获取原文并翻译 | 示例

摘要

The authors have proposed a new automatic classification scheme based on the conjoint use of the multi-layer perceptron (MLP) neural network and an enhanced particle swarm optimisation (EPSO) algorithm for its training. In this work, six predominant categories of heartbeats from MIT-BIH database are considered, which are: normal, premature ventricular contraction, atrial premature contraction, right bundle branch block, left bundle branch block and paced beats. First, the authors have applied the standard particle swarm optimisation (PSO) algorithm to select the network structure for each features vector. Then, the relevant electrocardiogram (ECG) features to the studied arrhythmias were chosen, which suited to the optimised training performance of the classifier. The recognition performance of the proposed EPSO-MLP classification system is evaluated considering two different versions of the EPSO algorithm. In the first version (EPSOw), the inertia weight factor of the PSO algorithm is proposed to be a variable with iterations. However, two PSO parameters are taken to be variables in the second version of the improved learning algorithm (EPSOwc). The obtained experimental results prove the enhancement of the convergence ability of the MLP neural network and confirm the superiority of the proposed EPSO-MLP classification scheme on comparison with the other last published classification systems.
机译:作者提出了一种基于多层感知器(MLP)神经网络和增强型粒子群优化(EPSO)算法的联合使用的新自动分类方案。在这项工作中,考虑了MIT-BIH数据库中的六个主要心跳类别,分别是:正常,室性早搏,房性早搏,右束支传导阻滞,左束支传导阻滞和起搏。首先,作者应用了标准粒子群优化(PSO)算法为每个特征向量选择网络结构。然后,选择与研究的心律不齐相关的心电图(ECG)特征,以适合分类器的最佳训练性能。考虑到两个不同版本的EPSO算法,对提出的EPSO-MLP分类系统的识别性能进行了评估。在第一个版本(EPSOw)中,提出了PSO算法的惯性权重因子是一个具有迭代的变量。但是,在改进的学习算法(EPSOwc)的第二版中,两个PSO参数被视为变量。获得的实验结果证明了MLP神经网络的收敛能力的增强,并与其他最新发布的分类系统相比,证实了所提出的EPSO-MLP分类方案的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号