机译:基于多层感知器神经网络和改进的新启发式方法的联合使用的自动ECG心律失常分类方案
Jijel Univ Elect Dept BP 98 Ouled Aissa Jijel 18000 Algeria|Jijel Univ Mechatron Lab LMT BP 98 Ouled Aissa Jijel 18000 Algeria;
Paris EST Creteil Univ Lab Images Signals & Intelligent Syst LISSI Paris France;
Jijel Univ Elect Dept BP 98 Ouled Aissa Jijel 18000 Algeria;
learning (artificial intelligence); particle swarm optimisation; multilayer perceptrons; electrocardiography; medical signal processing; signal classification; multilayer perceptron neural network; improved metaheuristic approach; automatic classification scheme; enhanced particle swarm optimisation algorithm; MIT-BIH database; normal contraction; premature ventricular contraction; atrial premature contraction; left bundle branch block; standard particle swarm optimisation algorithm; network structure; features vector; recognition performance; EPSO-MLP classification system; EPSO algorithm; PSO algorithm; PSO parameters; improved learning algorithm; MLP neural network; EPSO-MLP classification scheme; published classification systems;
机译:多层感知器和卷积神经网络对心律失常的分类
机译:基于遗传算法优化的多层感知器神经网络心律失常分类
机译:基于多层感知器人工神经网络的不同运动对脑电信号的分类
机译:可扩展的基于块的神经网络,可根据ECG信号对心律不齐进行实时分类
机译:基于神经网络的基于Al-Quran章节的自动音频分类
机译:多层感知器和卷积神经网络对心律失常的分类
机译:利用遗传算法优化多层Perceptron神经网络对心律失常分类
机译:神经网络计算:多层感知器与分层模式识别网络的分类问题比较