首页> 外文期刊>Biomedical Engineering, IEEE Transactions on >Instantaneous Measure of EEG Channel Importance for Improved Patient-Adaptive Neonatal Seizure Detection
【24h】

Instantaneous Measure of EEG Channel Importance for Improved Patient-Adaptive Neonatal Seizure Detection

机译:脑电通道重要性的瞬时措施,以改善患者适应性新生儿癫痫发作检测。

获取原文
获取原文并翻译 | 示例

摘要

A measure of bipolar channel importance is proposed for EEG-based detection of neonatal seizures. The channel weights are computed based on the integrated synchrony of classifier probabilistic outputs for the channels which share a common electrode. These estimated time-varying weights are introduced within a Bayesian probabilistic framework to provide a channel specific and, thus, adaptive seizure classification scheme. Validation results on a clinical dataset of neonatal seizures confirm the utility of the proposed channel weighting for the two patient-independent seizure detectors recently developed by this research group: one based on support vector machines (SVMs) and the other on Gaussian mixture models (GMMs). By exploiting the channel weighting, the receiver operating characteristic (ROC) area can be significantly increased for the most difficult patients, with the average ROC area across 17 patients increased by 22% (relative) for the SVM and by 15% (relative) for the GMM-based detector, respectively. It is shown that the system developed here outperforms the recent published studies in this area.
机译:提出了一种双极通道重要性的测量方法,用于基于脑电图的新生儿癫痫发作检测。基于共享公共电极的通道的分类器概率输出的集成同步,计算通道权重。将这些估计的随时间变化的权重引入贝叶斯概率框架内,以提供特定于信道的,因此自适应的癫痫发作分类方案。新生儿癫痫发作的临床数据集上的验证结果证实了该研究小组最近开发的两个患者独立的癫痫发作检测器的拟议通道加权的实用性:一个基于支持向量机(SVM),另一个基于高斯混合模型(GMM) )。通过利用通道权重,最困难的患者的接收器工作特征(ROC)面积可以显着增加,其中17例患者的平均ROC面积对于SVM增加22%(相对),对于SVM增加15%(相对)。基于GMM的检测器。结果表明,此处开发的系统优于该领域最近发表的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号