首页> 外文期刊>Autonomous agents and multi-agent systems >Systemic design of distributed multi-UAV cooperative decision-making for multi-target tracking
【24h】

Systemic design of distributed multi-UAV cooperative decision-making for multi-target tracking

机译:多目标跟踪的分布式多无人机协同决策系统设计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the cooperative decision-making problem for multi-target tracking in multi-unmanned aerial vehicle (UAV) systems. The multi-UAV decision-making problem is modeled in the framework of distributed multi-agent partially observable Markov decision processes (MPOMDPs). Specifically, the state of the targets is represented by the joint multi-target probability distribution (JMTPD), which is estimated by a distributed information fusion strategy. In the information fusion process, the most accurate estimation is selected to propagate through the whole network in finite time. We propose a max-consensus protocol to guarantee the consistency of the JMTPD. It is proven that the max-consensus can be achieved in the connected communication graph after a limited number of iterations. Based on the consistent JMTPD, the distributed partially observable Markov decision algorithm is used to make tracking decisions. The proposed method uses the Fisher information to bid for targets in a distributed auction. The bid is based upon the reward value of the individual UAV's POMDPs, thereby removing the need to optimize the global reward in the MPOMDPs. Finally, the cooperative decision-making approach is deployed in a simulation of a multi-target tracking problem. We compare our proposed algorithm with the centralized method and the greedy approach. The simulation results show that the proposed distributed method has a similar performance to the centralized method, and outperforms the greedy approach.
机译:在本文中,我们考虑了多无人机系统中多目标跟踪的合作决策问题。多UAV决策问题是在分布式多主体部分可观察的马尔可夫决策过程(MPOMDP)的框架中建模的。具体而言,目标的状态由联合多目标概率分布(JMTPD)表示,联合多目标概率分布由分布式信息融合策略估算。在信息融合过程中,选择最准确的估计以在有限的时间内传播到整个网络。我们提出了一个最大共识协议来保证JMTPD的一致性。事实证明,经过有限次数的迭代,就可以在连接的通讯图中实现最大共识。基于一致的JMTPD,使用分布式可部分观察的马尔可夫决策算法进行跟踪决策。所提出的方法使用Fisher信息在分布式拍卖中竞标目标。该出价基于各个无人机的POMDP的奖励价值,从而无需优化MPOMDP中的全局奖励。最后,在多目标跟踪问题的仿真中部署了协作决策方法。我们将我们提出的算法与集中式方法和贪婪方法进行了比较。仿真结果表明,所提出的分布式方法与集中式方法具有相似的性能,并且优于贪婪方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号