首页> 外文期刊>Autonomous agents and multi-agent systems >Continual planning and acting in dynamic multiagent environments
【24h】

Continual planning and acting in dynamic multiagent environments

机译:在动态多代理环境中进行持续规划并采取行动

获取原文
获取原文并翻译 | 示例

摘要

In order to behave intelligently, artificial agents must be able to deliberatively plan their future actions. Unfortunately, realistic agent environments are usually highly dynamic and only partially observable, which makes planning computationally hard. For most practical purposes this rules out planning techniques that account for all possible contingencies in the planning process. However, many agent environments permit an alternative approach, namely continual planning, i.e. the interleaving of planning with acting and sensing. This paper presents a new principled approach to continual planning that describes why and when an agent should switch between planning and acting. The resulting continual planning algorithm enables agents to deliberately postpone parts of their planning process and instead actively gather missing information that is relevant for the later refinement of the plan. To this end, the algorithm explictly reasons about the knowledge (or lack thereof) of an agent and its sensory capabilities. These concepts are modelled in the planning language (MAPL). Since in many environments the major reason for dynamism is the behaviour of other agents, MAPL can also model multiagent environments, common knowledge among agents, and communicative actions between them. For Continual Planning, MAPL introduces the concept of of assertions, abstract actions that substitute yet unformed subplans. To evaluate our continual planning approach empirically we have developed MAPSIM, a simulation environment that automatically builds multiagent simulations from formal MAPL domains. Thus, agents can not only plan, but also execute their plans, perceive their environment, and interact with each other. Our experiments show that, using continual planning techniques, deliberate action planning can be used efficiently even in complex multiagent environments.
机译:为了表现出明智的行为,人工代理必须能够有计划地计划其未来行动。不幸的是,现实的代理环境通常是高度动态的,并且只能部分观察到,这使得计划在计算上变得困难。出于大多数实际目的,这排除了考虑计划过程中所有可能发生的意外情况的计划技术。然而,许多代理环境允许一种替代方法,即连续计划,即计划与行动和感知的交织。本文提出了一种用于连续计划的新原则方法,该方法描述了代理商为何以及何时应在计划和行动之间进行切换。由此产生的连续计划算法使代理可以有意地推迟其计划过程的一部分,而可以主动收集与以后的计划细化有关的丢失信息。为此,该算法明确地说明了关于代理的知识(或其缺乏)及其感觉能力的原因。这些概念以计划语言(MAPL)建模。由于在许多环境中,动态性的主要原因是其他代理的行为,因此MAPL还可以对多代理环境,代理之间的常识以及它们之间的通信动作进行建模。对于持续计划,MAPL引入了断言(assertion)的概念,即抽象动作代替了尚未形成的子计划。为了凭经验评估我们的持续计划方法,我们开发了MAPSIM,这是一种仿真环境,可以从正式的MAPL域自动构建多主体仿真。因此,代理不仅可以计划,还可以执行他们的计划,感知他们的环境并相互交互。我们的实验表明,使用连续计划技术,即使在复杂的多主体环境中,也可以有效地使用故意的行动计划。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号