首页> 外文期刊>Autonomous agents and multi-agent systems >Detecting Disagreements In Large-scale Multi-agent Teams
【24h】

Detecting Disagreements In Large-scale Multi-agent Teams

机译:在大型多代理团队中发现分歧

获取原文
获取原文并翻译 | 示例

摘要

Intermittent sensory, actuation and communication failures may cause agents to fail in maintaining their commitments to others. Thus to collaborate robustly, agents must monitor others to detect coordination failures. Previous work on monitoring has focused mainly on small-scale systems, with only a limited number of agents. However, as the number of monitored agents is scaled up, two issues are raised that challenge previous work. First, agents become physically and logically disconnected from their peers, and thus their ability to monitor each other is reduced. Second, the number of possible coordination failures grows exponentially, with all potential interactions. Thus previous techniques that sift through all possible failure hypotheses cannot be used in large-scale teams. This paper tackles these challenges in the context of detecting disagreements among team-members, a monitoring task that is of particular importance to robust teamwork. First, we present new bounds on the number of agents that must be monitored in a team to guarantee disagreement detection. These bounds significantly reduce the connectivity requirements of the monitoring task in the distributed case. Second, we present YOYO, a highly scalable disagreement-detection algorithm which guarantees sound detection. YOYO's run-time scales linearly in the number of monitored agents, despite the exponential number of hypotheses. It compactly represents all valid hypotheses in single structure, while allowing for a complex hierarchical organizational structure to be considered in the monitoring. Both YOYO and the new bounds are explored analytically and empirically in monitoring problems involving thousands of agents.
机译:间歇性的感觉,促动和通信故障可能导致代理无法维持对他人的承诺。因此,要进行强大的协作,座席必须监视其他人以检测协调失败。先前的监视工作主要集中在小型系统上,代理数量有限。但是,随着受监视代理程序数量的增加,提出了两个挑战先前工作的问题。首先,代理在物理上和逻辑上与对等方断开连接,因此降低了彼此监视的能力。其次,在所有潜在交互作用下,可能的协调失败数量呈指数增长。因此,筛选所有可能的失败假设的先前技术无法在大型团队中使用。本文在检测团队成员之间的分歧的背景下解决了这些挑战,这是一项监视任务,对于健全的团队合作特别重要。首先,我们为团队中必须监视的代理数量提出了新的界限,以确保发现分歧。这些界限大大降低了分布式情况下监视任务的连接性要求。其次,我们介绍了YOYO,这是一种高度可扩展的分歧检测算法,可确保声音检测。尽管假设的数量呈指数级增长,但YOYO的运行时间与受监视代理的数量呈线性比例关系。它紧凑地表示单个结构中的所有有效假设,同时允许在监视中考虑复杂的分层组织结构。 YOYO和新界限在监视涉及数千个代理的问题时都进行了分析和经验研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号