首页> 外文期刊>IEEE transactions on automation science and engineering >Sensory-Updated Residual Life Distributions for Components With Exponential Degradation Patterns
【24h】

Sensory-Updated Residual Life Distributions for Components With Exponential Degradation Patterns

机译:具有指数退化模式的组件的感官更新剩余寿命分布

获取原文
获取原文并翻译 | 示例

摘要

Research on interpreting data communicated by smart sensors and distributed sensor networks, and utilizing these data streams in making critical decisions stands to provide significant advancements across a wide range of application domains such as maintenance management. In this paper, a stochastic degradation modeling framework is developed for computing and continuously updating residual life distributions of partially degraded components. The proposed degradation methodology combines population-specific degradation characteristics with component-specific sensory data acquired through condition monitoring in order to compute and continuously update remaining life distributions of partially degraded components. Two sensory updating procedures are developed and validated using real-world vibration-based degradation information acquired from rolling element thrust bearings. The results are compared with two benchmark policies and illustrate the benefits of the sensory updated degradation models proposed in this paper. Note for Practitioners—The proposed degradation-based prognostic methodology provides a comprehensive assessment of the current and future degradation states of partially degraded components by combining population-specific degradation or reliability information with real-time sensory health monitoring data. It is specifically beneficial for cases where degradation occurs in a cumulative manner and the degradation signal can be approximated by an exponential functional form. To implement this methodology, it is necessary: 1) to identify the physical phenomena associated with the evolution of the degradation process (spalling and wear herein); 2) choose the appropriate condition monitoring technology to monitor this phenomena (accelerometers); 3) identify a characteristic pattern in the sensory information to help develop a degradation signal (exponential growth); and 4) identify a failure threshold associated with the degradation signal. The first step in implementing this prognostic methodology is to obtain prior information related to stochastic parameters f the exponential model. This may require fitting some sample degradation signals with an exponential functional form and noting the values of the expo- nential parameters, or using subjective prior distributions. The second step is to acquire sensory information and begin updating the prior distribution. The updating frequency will dictate which expressions are used to compute the posterior distributions. Once the posterior means, variances, and correlation are computed, the truncated CDF of the residual life can be evaluated using
机译:对解释由智能传感器和分布式传感器网络通信的数据,并利用这些数据流进行关键决策的研究表明,它将在诸如维护管理之类的广泛应用领域中取得重大进展。在本文中,开发了一种随机退化建模框架,用于计算和不断更新部分退化组件的剩余寿命分布。所提出的降解方法论将特定种群的降解特征与通过状态监测获得的特定组分的感官数据相结合,以计算并不断更新部分降解组分的剩余寿命分布。使用从滚动体推力轴承获得的基于实际振动的退化信息,开发并验证了两种感官更新程序。将结果与两个基准策略进行比较,并说明了本文提出的感官更新降级模型的好处。给从业者的注意事项-所建议的基于退化的预测方法通过结合特定人群的退化或可靠性信息与实时感官健康监测数据,对部分退化组件的当前和未来退化状态进行了全面评估。对于以累积方式发生退化并且退化信号可以通过指数函数形式近似的情况,这是特别有利的。要实施此方法,必须:1)识别与降解过程的演变相关的物理现象(此处为剥落和磨损); 2)选择合适的状态监测技术来监测这种现象(加速度计); 3)在感官信息中识别特征模式,以帮助产生退化信号(指数增长);和4)识别与劣化信号相关联的故障阈值。实施这种预测方法的第一步是获得与指数模型的随机参数有关的先验信息。这可能需要用指数函数形式拟合一些样本降解信号,并注意指数参数的值,或使用主观先验分布。第二步是获取感官信息并开始更新先前的分布。更新频率将决定使用哪些表达式来计算后验分布。一旦计算了后均值,方差和相关性,就可以使用以下方法评估剩余寿命的截断CDF:

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号