首页> 外文期刊>IEEE transactions on automation science and engineering >An Intelligent Online Monitoring and Diagnostic System for Manufacturing Automation
【24h】

An Intelligent Online Monitoring and Diagnostic System for Manufacturing Automation

机译:制造自动化智能在线监测与诊断系统

获取原文
获取原文并翻译 | 示例

摘要

Condition monitoring and fault diagnosis in modern manufacturing automation is of great practical significance. It improves quality and productivity, and prevents damage to machinery. In general, this practice consists of two parts: 1)extracting appropriate features from sensor signals and 2)recognizing possible faulty patterns from the features. Through introducing the concept of marginal energy in signal processing, a new feature representation is developed in this paper. In order to cope with the complex manufacturing operations, three approaches are proposed to develop a feasible system for online applications. This paper develops intelligent learning algorithms using hidden Markov models and the newly developed support vector techniques to model manufacturing operations. The algorithms have been coded in modular architecture and hierarchical architecture for the recognition of multiple faulty conditions. We define a novel similarity measure criterion for the comparison of signal patterns which will be incorporated into a novel condition monitoring system. The sensor-based intelligent system has been implemented in stamping operations as an example. We demonstrate that the proposed method is substantially more effective than the previous approaches. Its unique features benefit various real-world manufacturing automation engineering, and it has great potential for shop floor applications.
机译:现代制造业自动化中的状态监测和故障诊断具有重要的现实意义。它提高了质量和生产率,并防止了对机械的损坏。通常,此做法包括两个部分:1)从传感器信号中提取适当的特征,以及2)从这些特征中识别可能的故障模式。通过引入边际能量的概念,提出了一种新的特征表示方法。为了应付复杂的制造操作,提出了三种方法来开发可行的在线应用系统。本文使用隐马尔可夫模型和最新开发的支持向量技术开发智能学习算法,以对制造操作进行建模。该算法已在模块化体系结构和分层体系结构中进行了编码,以识别多种故障情况。我们为信号模式的比较定义了一种新颖的相似性度量标准,该标准将被并入一种新颖的状态监测系统。例如,已在冲压操作中实现了基于传感器的智能系统。我们证明了所提出的方法比以前的方法有效得多。其独特的功能使各种现实世界的制造自动化工程受益,并且在车间应用中具有巨大的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号