首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >A Scale Stretch Method Based on ICP for 3D Data Registration
【24h】

A Scale Stretch Method Based on ICP for 3D Data Registration

机译:一种基于ICP的尺度拉伸方法进行3D数据配准

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we are concerned with the registration of two 3D data sets with large-scale stretches and noises. First, by incorporating a scale factor into the standard iterative closest point (ICP) algorithm, we formulate the registration into a constraint optimization problem over a 7D nonlinear space. Then, we apply the singular value decomposition (SVD) approach to iteratively solving such optimization problem. Finally, we establish a new ICP algorithm, named Scale-ICP algorithm, for registration of the data sets with isotropic stretches. In order to achieve global convergence for the proposed algorithm, we propose a way to select the initial registrations. To demonstrate the performance and efficiency of the proposed algorithm, we give several comparative experiments between Scale-ICP algorithm and the standard ICP algorithm.
机译:在本文中,我们关注两个具有大规模拉伸和噪声的3D数据集的配准。首先,通过将比例因子合并到标准迭代最近点(ICP)算法中,我们将配准公式化为7D非线性空间上的约束优化问题。然后,我们应用奇异值分解(SVD)方法来迭代解决此类优化问题。最后,我们建立了一种新的ICP算法,称为Scale-ICP算法,用于注册各向同性拉伸的数据集。为了实现所提出算法的全局收敛性,我们提出了一种选择初始注册的方法。为了演示该算法的性能和效率,我们在Scale-ICP算法和标准ICP算法之间进行了一些对比实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号