首页> 外文期刊>IEEE transactions on automation science and engineering >Decentralized Fault Diagnosis of Continuous Annealing Processes Based on Multilevel PCA
【24h】

Decentralized Fault Diagnosis of Continuous Annealing Processes Based on Multilevel PCA

机译:基于多层PCA的连续退火过程分散故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Process monitoring and fault diagnosis of the continuous annealing process lines (CAPLs) have been a primary concern in industry. Stable operation of the line is essential to final product quality and continuous processing of the upstream and downstream materials. In this paper, a multilevel principal component analysis (MLPCA)-based fault diagnosis method is proposed to provide meaningful monitoring of the underlying process and help diagnose faults. First, multiblock consensus principal component analysis (CPCA) is extended to MLPCA to model the large scale continuous annealing process. Secondly, a decentralized fault diagnosis approach is designed based on the proposed MLPCA algorithm. Finally, experiment results on an industrial CAPL are obtained to demonstrate the effectiveness of the proposed method.
机译:连续退火生产线(CAPL)的过程监控和故障诊断一直是工业界的主要关注点。生产线的稳定运行对于最终产品质量以及上游和下游物料的连续加工至关重要。本文提出了一种基于多层次主成分分析(MLPCA)的故障诊断方法,以提供对底层过程的有意义的监视并帮助诊断故障。首先,将多块共识主成分分析(CPCA)扩展到MLPCA,以对大规模连续退火过程进行建模。其次,基于提出的MLPCA算法设计了一种分散式故障诊断方法。最后,获得了工业CAPL的实验结果,证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号