首页> 外文期刊>Neural Networks, IEEE Transactions on >Data-Based Hybrid Tension Estimation and Fault Diagnosis of Cold Rolling Continuous Annealing Processes
【24h】

Data-Based Hybrid Tension Estimation and Fault Diagnosis of Cold Rolling Continuous Annealing Processes

机译:基于数据的冷轧连续退火过程混合张力估计与故障诊断

获取原文
获取原文并翻译 | 示例

摘要

The continuous annealing process line (CAPL) of cold rolling is an important unit to improve the mechanical properties of steel strips in steel making. In continuous annealing processes, strip tension is an important factor, which indicates whether the line operates steadily. Abnormal tension profile distribution along the production line can lead to strip break and roll slippage. Therefore, it is essential to estimate the whole tension profile in order to prevent the occurrence of faults. However, in real annealing processes, only a limited number of strip tension sensors are installed along the machine direction. Since the effects of strip temperature, gas flow, bearing friction, strip inertia, and roll eccentricity can lead to nonlinear tension dynamics, it is difficult to apply the first-principles induced model to estimate the tension profile distribution. In this paper, a novel data-based hybrid tension estimation and fault diagnosis method is proposed to estimate the unmeasured tension between two neighboring rolls. The main model is established by an observer-based method using a limited number of measured tensions, speeds, and currents of each roll, where the tension error compensation model is designed by applying neural networks principal component regression. The corresponding tension fault diagnosis method is designed using the estimated tensions. Finally, the proposed tension estimation and fault diagnosis method was applied to a real CAPL in a steel-making company, demonstrating the effectiveness of the proposed method.
机译:冷轧连续退火生产线(CAPL)是提高钢带钢力学性能的重要设备。在连续退火过程中,带钢张力是一个重要因素,它表明生产线是否稳定运行。沿生产线的异常张力分布会导致带材断裂和轧辊打滑。因此,必须估计整个张力分布,以防止出现故障。然而,在实际的退火过程中,沿机器方向仅安装了有限数量的带材张力传感器。由于带钢温度,气流,轴承摩擦,带钢惯性和轧辊偏心率的影响会导致非线性的张力动力学,因此很难应用第一性原理诱发模型来估算张力分布。本文提出了一种新的基于数据的混合张力估计和故障诊断方法,以估计两个相邻轧辊之间未测得的张力。主模型是通过基于观察者的方法,使用有限数量的测得的每个辊的张力,速度和电流建立的,其中张力误差补偿模型是通过应用神经网络主成分回归来设计的。使用估计的张力设计相应的张力故障诊断方法。最后,将提出的张力估计和故障诊断方法应用于某炼钢公司的实际CAPL,证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号