首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Spatial Density Patterns for Efficient Change Detection in 3D Environment for Autonomous Surveillance Robots
【24h】

Spatial Density Patterns for Efficient Change Detection in 3D Environment for Autonomous Surveillance Robots

机译:用于自动监视机器人的3D环境中有效变化检测的空间密度模式

获取原文
获取原文并翻译 | 示例

摘要

The ability to detect changes is an essential competence that robots should possess for increased autonomy. In several applications, such as surveillance, a robot needs to detect relevant changes in the environment by comparing current sensory data with previously acquired information from the environment. We present an efficient method for point cloud comparison and change detection in 3D environments based on spatial density patterns. Our method automatically segments 3D data corrupted by noise and outliers into an implicit volume bounded by a surface, making it possible to efficiently apply Boolean operations in order to detect changes and to update existing maps. The method has been validated on several trials using mobile robots operating in real environments and its performance was compared to state-of-the-art algorithms. Our results demonstrate the performance of the proposed method, both in greater accuracy and reduced computational cost.
机译:发现变化的能力是机器人增强自主性所必须具备的一项基本能力。在诸如监视的几种应用中,机器人需要通过将当前的传感数据与先前从环境中获取的信息进行比较来检测环境中的相关变化。我们提出了一种基于空间密度模式的3D环境中点云比较和变化检测的有效方法。我们的方法会自动将3D数据(由于噪声和异常值而损坏)分割成受表面限制的隐式体积,从而可以有效地应用布尔运算来检测变化并更新现有地图。该方法已经在使用真实环境中运行的移动机器人的多次试验中得到了验证,并将其性能与最新算法进行了比较。我们的结果证明了所提方法的性能,既提高了准确性,又降低了计算成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号