首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Model-Free Optimal Control for Affine Nonlinear Systems With Convergence Analysis
【24h】

Model-Free Optimal Control for Affine Nonlinear Systems With Convergence Analysis

机译:仿射非线性系统的无模型最优控制及其收敛性分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a self-learning control scheme is proposed for the infinite horizon optimal control of affine nonlinear systems based on the action dependent heuristic dynamic programming algorithm. The policy iteration technique is introduced to derive the optimal control policy with feasibility and convergence analysis. It shows that the “greedy” control action for each state is uniquely existent, the learned control policy after each policy iteration is admissible, and the optimal control policy is able to be obtained. Two three-layer perceptron neural networks are employed to implement the scheme. The critic network is trained by a novel rule to conform to the Bellman equation, and the action network is trained to yield a better control policy. Both training processes alternate until the optimal control policy is achieved. Two simulation examples are provided to validate the effectiveness of the approach.
机译:针对仿射非线性系统的无限水平最优控制,提出了一种基于动作依赖启发式动态规划算法的自学习控制方案。引入策略迭代技术,通过可行性和收敛性分析得出最优控制策略。它表明,每个状态的“贪婪”控制动作是唯一存在的,每个策略迭代后学习的控制策略是允许的,并且可以获得最佳控制策略。该方案采用两个三层感知器神经网络。评论者网络通过新颖的规则进行训练以符合Bellman方程,行为网络经过训练以产生更好的控制策略。两种培训过程交替进行,直到实现最佳控制策略为止。提供了两个仿真示例,以验证该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号