首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Asymptotically Optimal Motion Planning for Learned Tasks Using Time-Dependent Cost Maps
【24h】

Asymptotically Optimal Motion Planning for Learned Tasks Using Time-Dependent Cost Maps

机译:使用时变成本图对学习任务进行渐近最优运动规划

获取原文
获取原文并翻译 | 示例

摘要

In unstructured environments in people's homes and workspaces, robots executing a task may need to avoid obstacles while satisfying task motion constraints, e.g., keeping a plate of food level to avoid spills or properly orienting a finger to push a button. We introduce a sampling-based method for computing motion plans that are collision-free and minimize a cost metric that encodes task motion constraints. Our time-dependent cost metric, learned from a set of demonstrations, encodes features of a task's motion that are consistent across the demonstrations and, hence, are likely required to successfully execute the task. Our sampling-based motion planner uses the learned cost metric to compute plans that simultaneously avoid obstacles and satisfy task constraints. The motion planner is asymptotically optimal and minimizes the Mahalanobis distance between the planned trajectory and the distribution of demonstrations in a feature space parameterized by the locations of task-relevant objects. The motion planner also leverages the distribution of the demonstrations to significantly reduce plan computation time. We demonstrate the method's effectiveness and speed using a small humanoid robot performing tasks requiring both obstacle avoidance and satisfaction of learned task constraints.
机译:在人们的家和工作场所的非结构化环境中,执行任务的机器人可能需要在满足任务运动约束的同时避开障碍物,例如保持食物水平以避免溢出或适当地使手指按动按钮。我们引入了一种基于采样的方法来计算无冲突的运动计划,并最小化对任务运动约束进行编码的成本度量。我们从一组演示中学到了与时间相关的成本度量标准,它编码了演示过程中一致的任务动作特征,因此可能需要成功执行任务。我们基于采样的运动计划器使用学习的成本指标来计算可同时避免障碍并满足任务约束的计划。运动计划程序是渐近最优的,它可以最大限度地减少计划轨迹与在与任务相关的对象的位置参数化的特征空间中的演示分布之间的马氏距离。运动计划器还利用演示的分布来显着减少计划的计算时间。我们使用小型拟人机器人执行既需要避开障碍物又要满足学习任务约束的任务,证明了该方法的有效性和速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号