首页> 外文期刊>IEEE transactions on automation science and engineering >Probabilistic Automata Model of a Soft Robot for the Planning of Manipulation Tasks
【24h】

Probabilistic Automata Model of a Soft Robot for the Planning of Manipulation Tasks

机译:规划操作任务的软机器人的概率自动机模型

获取原文
获取原文并翻译 | 示例

摘要

Soft robots must be able to structure an automation problem into a sequence of actions that lead to a desired state, before they can fulfill a meaningful role in automation applications. This, however, can only be successful if the robot can predict the outcome of an action. The theory of rigid industrial robots is not applicable without major changes, because kinematic chains do not adequately describe the continuous deformation of the complex, often biologically inspired shapes of soft robots. Analytic solutions have not been found yet. Numerical solutions based on finite elements are slow, technically challenging, and only suitable for one specific robot. It is, however, possible to observe the outcome of an action, and use these observations to plan a sequence of actions that let the robot accomplish an automation task. In this paper, we analyze a probabilistic automaton that computes the optimal sequence of actions to bring the robot into a desired state. An earlier article explained the functioning of the method in a toy example. In this paper, we analyze if it is feasible to apply the method to a planning problem inspired by a real soft robot. We show the results and document the planning process. We identify the analog of an impulse response, although it is not closed form due to the nonparametric nature of the method.
机译:软机器人必须能够将自动化问题组织为一系列导致所需状态的动作,然后才能在自动化应用程序中发挥有意义的作用。但是,只有在机器人可以预测动作结果的情况下,才能成功。刚性工业机器人的理论在没有重大变化的情况下是不适用的,因为运动链无法充分描述复杂的,经常受到生物学启发的软机器人形状的连续变形。尚未找到分析解决方案。基于有限元的数值解法速度慢,技术难度大,并且仅适用于一个特定的机器人。但是,可以观察动作的结果,并使用这些观察结果来计划一系列动作,以使机器人完成自动化任务。在本文中,我们分析了一种概率自动机,该机能计算使机器人进入所需状态的最佳操作顺序。较早的文章在一个玩具示例中解释了该方法的功能。在本文中,我们分析了将该方法应用于由实际软机器人启发的规划问题是否可行。我们显示结果并记录计划过程。尽管由于该方法的非参数性质,它不是封闭形式,但我们确定了脉冲响应的类似物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号