首页> 外文期刊>IEEE transactions on automation science and engineering >Translation-Invariant Multiscale Energy-Based PCA for Monitoring Batch Processes in Semiconductor Manufacturing
【24h】

Translation-Invariant Multiscale Energy-Based PCA for Monitoring Batch Processes in Semiconductor Manufacturing

机译:基于平移不变的多尺度基于能量的PCA,用于监视半导体制造中的批处理

获取原文
获取原文并翻译 | 示例

摘要

The overwhelming majority of processes taking place in semiconductor manufacturing operate in a batch mode by imposing time-varying conditions to the products in a cyclic and repetitive fashion. These conditions make process monitoring a very challenging task, especially in massive production plants. Among the state-of-the-art approaches proposed to deal with this problem, the so-called multiway methods incorporate the batch dynamic features in a normal operation model at the expense of estimating a large number of parameters. This makes these approaches prone to overfitting and instability. Moreover, batch trajectories are required to be well aligned in order to provide the expected performance. To overcome these issues and other limitations of the conventional methodologies for process monitoring in semiconductor manufacturing, we propose an approach, translation-invariant multiscale energy-based principal component analysis, that requires a much lower number of estimated parameters. It is free of process trajectory alignment requirements and thus easier to implement and maintain, while still rendering useful information for fault detection and root cause analysis. The proposed approach is based on implementing a translation-invariant wavelet decomposition along the time series profile of each variable in one batch. The normal operational signatures in the time-frequency domain are extracted, modeled, and then used for process monitoring, allowing prompt detection of process abnormalities. The proposed procedure was tested with real industrial data and it proved to effectively detect the existing faults as well as to provide reliable indications of their underlying root causes.
机译:半导体制造中发生的绝大多数过程都是通过以周期性和重复的方式对产品施加时变条件而以批处理方式进行的。这些条件使过程监视成为一项非常具有挑战性的任务,尤其是在大规模生产工厂中。在为解决此问题而提出的最新方法中,所谓的多路方法将批处理动态特征合并到正常操作模型中,以估计大量参数为代价。这使得这些方法易于过度拟合和不稳定。此外,批处理轨迹需要很好地对齐以便提供预期的性能。为了克服这些问题以及半导体制造过程监控中传统方法的其他局限性,我们提出了一种基于平移不变的多尺度能量主成分分析的方法,该方法所需的估计参数数量要少得多。它没有过程轨迹对齐要求,因此更易于实现和维护,同时仍提供有用的信息以进行故障检测和根本原因分析。所提出的方法基于沿一批中每个变量的时间序列分布图执行平移不变小波分解。提取,建模时频域中的正常操作签名,然后将其用于过程监视,从而可以迅速检测过程异常。所提出的程序已通过实际的工业数据进行了测试,并被证明可以有效地检测现有故障,并为其潜在的根本原因提供可靠的指示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号