首页> 外文期刊>IEEE transactions on automation science and engineering >Toward Teaching by Demonstration for Robot-Assisted Minimally Invasive Surgery
【24h】

Toward Teaching by Demonstration for Robot-Assisted Minimally Invasive Surgery

机译:通过演示为机器人辅助微创手术进行示范

获取原文
获取原文并翻译 | 示例

摘要

Learning manipulation skills from open surgery provides more flexible access to the organ targets in the abdomen cavity and this could make the surgical robot working in a highly intelligent and friendly manner. Teaching by demonstration (TbD) is capable of transferring the manipulation skills from human to humanoid robots by employing active learning of multiple demonstrated tasks. This work aims to transfer motion skills from multiple human demonstrations in open surgery to robot manipulators in robot-assisted minimally invasive surgery (RA-MIS) by using TbD. However, the kinematic constraint should be respected during the performing of the learned skills by using a robot for minimally invasive surgery. In this article, we propose a novel methodology by integrating the cognitive learning techniques and the developed control techniques, allowing the robot to be highly intelligent to learn senior surgeons' skills and to perform the learned surgical operations in semiautonomous surgery in the future. Finally, experiments are performed to verify the efficiency of the proposed strategy, and the results demonstrate the ability of the system to transfer human manipulation skills to a robot in RA-MIS and also shows that the remote center of motion (RCM) constraint can be guaranteed simultaneously. Note to Practitioners-This article is inspired by limited access to the manipulation of laparoscopic surgery under a kinematic constraint at the point of incision. Current commercial surgical robots are mostly operated by teleoperation, which is representing less autonomy on surgery. Assisting and enhancing the surgeon's performance by increasing the autonomy of surgical robots has fundamental importance. The technique of teaching by demonstration (TbD) is capable of transferring the manipulation skills from human to humanoid robots by employing active learning of multiple demonstrated tasks. With the improved ability to interact with humans, such as flexibility and compliance, the new generation of serial robots becomes more and more popular in nonclinical research. Thus, advanced control strategies are required by integrating cognitive functions and learning techniques into the processes of surgical operation between robots, surgeon, and minimally invasive surgery (MIS). In this article, we propose a novel methodology to model the manipulation skill from multiple demonstrations and execute the learned operations in robot-assisted minimally invasive surgery (RA-MIS) by using a decoupled controller to respect the remote center of motion (RCM) constraint exploiting the redundancy of the robot. The developed control scheme has the following functionalities: 1) it enables the 3-D manipulation skill modeling after multiple demonstrations of the surgical tasks in open surgery by integrating dynamic time warping (DTW) and Gaussian mixture model (GMM)-based dynamic movement primitive (DMP) and 2) it maintains the RCM constraint in a smaller safe area while performing the learned operation in RA-MIS. The developed control strategy can also be potentially used in other industrial applications with a similar scenario.
机译:开放手术的学习操纵技巧提供了更灵活地进入腹腔腔内的器官目标,这可以使外科机器人以高度智能和友好的方式工作。通过示范(TBD)的教学能够通过采用主动学习多次证明任务来将操纵技能转移到人类机器人。这项工作旨在通过使用TBD在机器人辅助微创手术(RA-MIS)中的开放手术中的多个人类演示中转移动作技能。然而,通过使用机器人用于微创手术的机器人在执行学习技能期间应尊重运动学约束。在本文中,我们通过整合认知学习技术和开发的控制技术来提出一种新颖的方法,使机器人能够高度智能地学习高级外科医生的技能,并在未来在半自治手术中进行学习的外科手术。最后,进行实验以验证提出的策略的效率,结果表明了系统将人类操纵技能转移到RA-MIS中的机器人的能力,并表明了运动遥控器(RCM)约束同时保证。从业者的注意事项 - 本文通过在切口点的运动约束下有限地获得腹腔镜手术的控制。目前的商业手术机器人主要由遥操作运营,这在手术上代表不太自治。通过增加外科机器人的自主性具有根本重要性,协助和提高外科医生的表现。通过示范(TBD)的教学技术能够通过采用主动学习多次证明任务来将操纵技能转移到人形机器人。随着改善与人类的互动能力,例如灵活性和合规性,新一代串行机器人在非屏幕研究中变得越来越受欢迎。因此,通过将认知功能和学习技术集成到机器人,外科医生和微创手术(MIS)之间的手术操作过程中,需要先进的控制策略。在本文中,我们提出了一种新颖的方法,以通过使用解耦控制器来提出从多个演示模拟操作技能,并在机器人辅助的微创手术(RA-MIS)中以尊重偏远的运动(RCM)约束利用机器人的冗余。开发的控制方案具有以下功能:1)通过集成动态时间翘曲(DTW)和高斯混合模型(GMM)的动态运动原语,通过集成动态时间翘曲(DTW)和高斯混合模型(GMM)在开放手术中的手术任务的多次演示之后实现三维操纵技能建模(DMP)和2)它在较小的安全区域中保持RCM约束,同时在RA-MIS中执行学习操作。开发的控制策略也可以在具有类似场景的其他工业应用中使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号