首页> 外文期刊>IEEE transactions on automation science and engineering >An Optimization-Based Approach to Discover the Unobservable Behavior of a Discrete-Event System Through Interpreted Petri Nets
【24h】

An Optimization-Based Approach to Discover the Unobservable Behavior of a Discrete-Event System Through Interpreted Petri Nets

机译:基于优化的方法来通过解释的Petri网发现离散事件系统的不可观察行为

获取原文
获取原文并翻译 | 示例

摘要

This article deals with the problem of discovering a Petri net (PN) model of a discrete-event system, starting from the observation of long-event sequences. Precisely, given an interpreted PN (IPN) system modeling the relations between input and output events of the system (i.e., the reactive/observable behavior), the internal state evolutions of the system (i.e., the unobservable behavior) are first discovered and then modeled. The proposed unobservable discovery takes advantage of the novel concept of interpreted sequences, which better characterize the system and model the behavior by considering both observable markings (outputs) and transition firings (inputs). The unobservable modeling is approached as a net synthesis problem. It relies on an optimization-based procedure that identifies the complementary structure; in particular, places only are added to the original model. Note to Practitioners-Black-box identification procedures process an input-output sequence recorded for a long period of time during the functioning of a closed-loop controlled system, and then return a model of the system. However, even if these models simulate well the recorded sequence, they are not very accurate. Indeed, they simulate also other sequences that, in general, are not admitted by the real system. The method proposed here aims to make more accurate these models by discovering the unobservable behavior of a controlled system, related to evolutions of the internal state (and variables) of the system without changing the capability of simulating the observed behavior.
机译:本文涉及发现离散事件系统的Petri网(PN)模型的问题,从观察到长截图序列。准确地说,给定解释的PN(IPN)系统建模系统的输入和输出事件之间的关系(即,反应/可观察行为),首先发现系统(即,不可观察的行为)的内部状态演进建模。建议的不可观察的发现利用了解释序列的新颖概念,这更好地描述了系统和模型行为,通过考虑可观察标记(输出)和转换次燃点(输入)。不可观察的建模接近净合成问题。它依赖于识别互补结构的基于优化的过程;特别是,仅添加到原始模型中的地方。注意事项 - 黑匣子识别过程过程过程在闭环控制系统的运行期间长时间记录的输入 - 输出序列,然后返回系统的型号。但是,即使这些模型模拟录制序列,它们也不是非常准确的。实际上,它们还模拟了一般的其他序列,通常不会被真实系统达成。这里提出的方法旨在通过发现受控系统的不可观察的行为,与系统的内部状态(和变量)的演变相关,而不改变模拟观察到的行为的能力的情况,可以更准确地进行这些模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号