首页> 外文期刊>IEEE transactions on automation science and engineering >Autonomous Indoor Exploration Via Polygon Map Construction and Graph-Based SLAM Using Directional Endpoint Features
【24h】

Autonomous Indoor Exploration Via Polygon Map Construction and Graph-Based SLAM Using Directional Endpoint Features

机译:使用定向端点功能通过多边形地图构建和基于图的SLAM进行自主室内探索

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel 2-D laser-based autonomous exploration approach for mobile robots is proposed, which is based on a novel polygon map construction approach and graph-based simultaneous localization and mapping (SLAM) with directional endpoint features. This approach is composed of three modules: graph-based SLAM using directional endpoint features, polygon map construction, and exploration. Different from existing approaches in the field of 2-D SLAM, the newly proposed 2-D graph-SLAM is based on 3-D "directional endpoint" features; on this basis, a well-known data structure "circular-doubly linked list" is applied to construct a novel polygon map for navigation. Note that it is efficient for circular-doubly linked list to initialize and update the polygon map. In addition, we propose a new information entropy calculation approach to quantify the entropy of the polygon map. Then for each candidate goal, we could obtain corresponding information gain and make next decision through collision detection. Comparative experimental results with respect to the well-known Gmapping and Karto SLAM are presented to show superior performance of the proposed graph-based SLAM. The autonomous exploration experiments in the office and hallway environments show the effectiveness of the proposed approach for robotic mapping and exploration tasks. Note to Practitioners - This paper is motivated by the challenges of autonomous exploration for mobile robots. We suggest a novel autonomous exploration approach through directional endpoint feature-based graph simultaneous localization and mapping (SLAM) and polygon map construction. This newly proposed approach does not require any artificial landmark or underlying occupancy grid map, which is easy to implement. The experiments are carried out in the office and hallway environments, including graph-based SLAM and autonomous exploration for mobile robots. The experimental results show the effectiveness of the proposed autonomous exploration framework. In the future research, we will address autonomous exploration in more challenging dynamic environments.
机译:本文提出了一种新颖的基于二维激光的移动机器人自主探索方法,该方法基于一种新颖的多边形地图构建方法以及具有方向终点特征的基于图的同时定位和地图绘制(SLAM)。此方法由三个模块组成:使用方向端点特征的基于图的SLAM,多边形地图构造和探索。与2-D SLAM领域中的现有方法不同,新提出的2-D graph-SLAM基于3-D“方向端点”功能;在此基础上,采用众所周知的数据结构“圆-双链表”,构造出新颖的导航多边形图。请注意,圆形双链表初始化和更新多边形地图非常有效。另外,我们提出了一种新的信息熵计算方法来量化多边形图的熵。然后对于每个候选目标,我们可以获得相应的信息增益,并通过碰撞检测做出下一步决策。相对于著名的Gmapping和Karto SLAM的比较实验结果被提出来显示所提出的基于图的SLAM的优越性能。在办公室和走廊环境中进行的自主探索实验表明,该方法对于机器人制图和探索任务的有效性。执业者注意事项-本文是受移动机器人自主探索挑战的启发。我们建议通过基于方向端点特征的图同时定位和映射(SLAM)和多边形地图构造的一种新颖的自主探索方法。这种新提出的方法不需要任何易于实现的人为地标或底层占用网格图。实验是在办公室和走廊环境中进行的,包括基于图形的SLAM和针对移动机器人的自主探索。实验结果表明了提出的自主勘探框架的有效性。在未来的研究中,我们将解决更具挑战性的动态环境中的自主探索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号