首页> 外文期刊>Automation in construction >Iterative closest point for accurate plane detection in unorganized point clouds
【24h】

Iterative closest point for accurate plane detection in unorganized point clouds

机译:无组织点云中精确平面检测的迭代最接近点

获取原文
获取原文并翻译 | 示例

摘要

Plane detection is an important step in the reconstruction of 3D models of buildings from point clouds. The results of plane detection methods based on the region growing approach mainly depend on the choice of seed points. In this study, we introduce a novel region growing-based method for plane detection in unorganized point clouds. Our method uses the Iterative Closest Point (ICP) algorithm to extract reliable seeds. To enhance the performance and the quality of the results, we used voxel grids representation of the point clouds in the growing process. The classification of the candidate planes is improved by using the number of voxel cells covering accumulated segments. The method is deterministic, runs in O(nlog(n)), and does not take into account the orientation of the point clouds. The results of plane detection using the proposed method on a benchmark consisting of 9 point clouds of buildings show a better precision of extracted planes compared to those obtained with 3-D KHT and PCL-RANSAC. Although slower than 3-D KHT, our method requires an execution time (3 x times) shorter than PCL-RANSAC.
机译:平面检测是从点云层重建建筑物的三维模型的一个重要步骤。基于该地区生长方法的平面检测方法的结果主要取决于种子点的选择。在这项研究中,我们介绍了一种新的基于地区生长的基于过程,用于在未经组织点云中的平面检测。我们的方法使用迭代最近的点(ICP)算法提取可靠的种子。为了提高结果的性能和质量,我们在不断增长的过程中使用了Voxel网格表示点云的表现。通过使用覆盖累积段的体素细胞的数量来改善候选平面的分类。该方法是确定性的,在O(nlog(n))中运行,并且不考虑点云的方向。使用所提出的方法在由9点云组成的基准测试中使用所提出的方法的平面检测结果表明,与用3-D KHT和PCL-RANSAC获得的那些,提取平面的更好精度。虽然比3-D KHT慢,但我们的方法需要比PCL-Ransac短的执行时间(3倍)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号