首页> 外文期刊>IEEE Transactions on Automatic Control >A Fast Nonlinear Model Identification Method
【24h】

A Fast Nonlinear Model Identification Method

机译:一种快速的非线性模型辨识方法

获取原文
获取原文并翻译 | 示例

摘要

The identification of nonlinear dynamic systems using linear-in-the-parameters models is studied. A fast recursive algorithm (FRA) is proposed to select both the model structure and to estimate the model parameters. Unlike orthogonal least squares (OLS) method, FRA solves the least-squares problem recursively over the model order without requiring matrix decomposition. The computational complexity of both algorithms is analyzed, along with their numerical stability. The new method is shown to require much less computational effort and is also numerically more stable than OLS.
机译:研究了使用参数线性模型识别非线性动力系统的方法。提出了一种快速递归算法(FRA)来选择模型结构和估计模型参数。与正交最小二乘(OLS)方法不同,FRA在模型阶上递归求解最小二乘问题,而无需矩阵分解。分析了两种算法的计算复杂度,以及它们的数值稳定性。新方法显示所需的计算量更少,并且在数值上比OLS更稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号