首页> 外文期刊>IEEE Transactions on Automatic Control >State-Dependent Scaling Problems and Stability of Interconnected iISS and ISS Systems
【24h】

State-Dependent Scaling Problems and Stability of Interconnected iISS and ISS Systems

机译:iISS和ISS系统互连的状态相关缩放问题和稳定性

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of establishing stability of nonlinear interconnected systems. This paper introduces a mathematical formulation of the state-dependent scaling problems whose solutions directly provide Lyapunov functions proving stability properties of interconnected dissipative systems in a unified manner. Stability criteria are interpreted as sufficient conditions for the existence of solutions to the state-dependent scaling problems. Computing solutions to the problems is straightforward for systems covered by classical stability criteria. It, however, could be too difficult for systems with strong nonlinearity. The main purpose of this paper is to demonstrate the effectiveness beyond formal applicability by focusing on interconnected integral input-to-state stable (iISS) systems and input-to-state stable (ISS) systems. This paper derives small-gain-type theorems for interconnected systems involving iISS systems from the state-dependent scaling formulation. This paper provides solutions and Lyapunov functions explicitly. The new framework seamlessly generalizes the ISS small-gain theorem and classical stability criteria such as the $cal L_p$ small-gain theorem, the passivity theorems, the circle, and Popov criteria. State-dependence of the scaling is crucial for effective treatment of essential nonlinearities, while constants are sufficient for classical nonlinearities.
机译:本文解决了建立非线性互连系统稳定性的问题。本文介绍了与状态有关的比例缩放问题的数学公式,其解直接提供了Lyapunov函数,从而以统一的方式证明了互连耗散系统的稳定性。稳定性标准被解释为存在与状态相关的缩放问题的解的充分条件。对于经典稳定性标准所涵盖的系统,解决问题的方法很简单。但是,对于具有强非线性的系统而言,这可能太困难了。本文的主要目的是通过重点研究互连的整体输入到状态稳定(iISS)系统和输入到状态稳定(ISS)系统,来证明超出正式适用性的有效性。本文从依赖于状态的缩放公式中得出了涉及iISS系统的互连系统的小增益定理。本文明确提供了解决方案和Lyapunov功能。新框架无缝地推广了ISS小增益定理和经典稳定性标准,例如$ cal L_p $小增益定理,无源定理,圆和Popov标准。标度的状态相关性对于有效处理基本非线性至关重要,而常数对于经典非线性而言已足够。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号