首页> 外文期刊>IEEE Transactions on Automatic Control >A Novel Continuous Forward Algorithm for RBF Neural Modelling
【24h】

A Novel Continuous Forward Algorithm for RBF Neural Modelling

机译:RBF神经建模的一种新的连续前向算法

获取原文
获取原文并翻译 | 示例

摘要

A continuous forward algorithm (CFA) is proposed for nonlinear modelling and identification using radial basis function (RBF) neural networks. The problem considered here is simultaneous network construction and parameter optimization, well-known to be a mixed integer hard one. The proposed algorithm performs these two tasks within an integrated analytic framework, and offers two important advantages. First, the model performance can be significantly improved through continuous parameter optimization. Secondly, the neural representation can be built without generating and storing all candidate regressors, leading to significantly reduced memory usage and computational complexity. Computational complexity analysis and simulation results confirm the effectiveness
机译:提出了一种基于径向基函数(RBF)神经网络的非线性建模和辨识的连续正向算法(CFA)。这里考虑的问题是同时进行网络构建和参数优化,众所周知这是一个混合整数硬算法。所提出的算法在集成的分析框架内执行这两项任务,并提供了两个重要的优点。首先,可以通过连续参数优化显着改善模型性能。其次,可以在不生成和存储所有候选回归函数的情况下构建神经表示,从而显着减少了内存使用量和计算复杂性。计算复杂度分析和仿真结果证实了有效性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号