首页> 外文期刊>IEEE Transactions on Neural Networks >A Hybrid Forward Algorithm for RBF Neural Network Construction
【24h】

A Hybrid Forward Algorithm for RBF Neural Network Construction

机译:RBF神经网络构造的混合正向算法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel hybrid forward algorithm (HFA) for the construction of radial basis function (RBF) neural networks with tunable nodes. The main objective is to efficiently and effectively produce a parsimonious RBF neural network that generalizes well. In this study, it is achieved through simultaneous network structure determination and parameter optimization on the continuous parameter space. This is a mixed integer hard problem and the proposed HFA tackles this problem using an integrated analytic framework, leading to significantly improved network performance and reduced memory usage for the network construction. The computational complexity analysis confirms the efficiency of the proposed algorithm, and the simulation results demonstrate its effectiveness
机译:本文提出了一种新颖的混合前向算法(HFA),用于构造带有可调节点的径向基函数(RBF)神经网络。主要目标是有效有效地产生能很好地概括的简约RBF神经网络。在这项研究中,它是通过在连续参数空间上同时进行网络结构确定和参数优化来实现的。这是一个混合整数硬问题,建议的HFA使用集成的分析框架解决了该问题,从而显着提高了网络性能,并减少了网络构建的内存使用量。计算复杂度分析证实了所提算法的有效性,仿真结果证明了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号