首页> 外文期刊>Expert Systems with Application >Design of face recognition algorithm using PCA -LDA combined for hybrid data pre-processing and polynomial-based RBF neural networks : Design and its application
【24h】

Design of face recognition algorithm using PCA -LDA combined for hybrid data pre-processing and polynomial-based RBF neural networks : Design and its application

机译:基于PCA -LDA的混合数据预处理和基于多项式的RBF神经网络的人脸识别算法设计:设计与应用。

获取原文
获取原文并翻译 | 示例

摘要

In this study, polynomial-based radial basis function neural networks are proposed as one of the functional components of the overall face recognition system. The system consists of the preprocessing and recognition module. The design methodology and resulting procedure of the proposed P-RBF NNs are presented. The structure helps construct a solution to high-dimensional pattern recognition problems. In data preprocessing part, principal component analysis (PCA) is generally used in face recognition. It is useful in reducing the dimensionality of the feature space. However, because it is concerned with the overall face image, it cannot guarantee the same classification rate when changing viewpoints. To compensate for these limitations, linear discriminant analysis (LDA) is used to enhance the separation between different classes. In this paper, we elaborate on the PCA-LDA algorithm and design an optimal P-RBF NNs for the recognition module. The proposed P-RBF NNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part realized in terms of fuzzy "if-then" rules. In the condition part of fuzzy rules, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means (FCM) algorithm. In the conclusion part of rules, the connection weight is realized through three types of polynomials such as constant, linear, and quadratic. The coefficients of the P-RBF NNs model are obtained by fuzzy inference method forming the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum, fuzzification coefficient, and the feature selection mechanism) of the networks are optimized by means of differential evolution (DE). The experimental results completed on benchmark face datasets - the AT&T, and Yale datasets demonstrate the effectiveness and efficiency of PCA-LDA combined algorithm compared with other algorithms such as PCA, LPP, 2D-PCA and 2D-LPP. A real time face recognition system realized in this way is also presented.
机译:在这项研究中,基于多项式的径向基函数神经网络被提出作为整个人脸识别系统的功能组件之一。该系统由预处理和识别模块组成。介绍了所提出的P-RBF神经网络的设计方法和所得过程。该结构有助于构建针对高维模式识别问题的解决方案。在数据预处理部分,人脸识别通常使用主成分分析(PCA)。在减少特征空间的维数方面很有用。但是,因为它与整体面部图像有关,所以在改变视点时不能保证相同的分类率。为了弥补这些限制,线性判别分析(LDA)用于增强不同类别之间的分离。在本文中,我们详细介绍了PCA-LDA算法,并为识别模块设计了最佳的P-RBF神经网络。所提出的P-RBF NNs体系结构由三个功能模块组成,例如条件部分,结论部分和根据模糊的“ if-then”规则实现的推理部分。在模糊规则的条件部分,使用通过模糊C均值(FCM)算法实现的模糊聚类对输入空间进行分区。在规则的结论部分,连接权重是通过三种类型的多项式来实现的,例如常数,线性和二次项。 P-RBF NNs模型的系数是通过构成模糊规则的推理部分的模糊推理方法获得的。网络的基本设计参数(包括学习率,动量,模糊化系数和特征选择机制)通过差分进化(DE)进行了优化。在基准面部数据集-AT&T和Yale数据集上完成的实验结果证明,与其他算法(例如PCA,LPP,2D-PCA和2D-LPP)相比,PCA-LDA组合算法的有效性和效率。还提出了以这种方式实现的实时面部识别系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号