首页> 外文期刊>IEEE Transactions on Automatic Control >Adaptive Tracking Games for Coupled Stochastic Linear Multi-Agent Systems: Stability, Optimality and Robustness
【24h】

Adaptive Tracking Games for Coupled Stochastic Linear Multi-Agent Systems: Stability, Optimality and Robustness

机译:耦合随机线性多智能体系统的自适应跟踪博弈:稳定性,最优性和鲁棒性

获取原文
获取原文并翻译 | 示例

摘要

Distributed adaptive tracking-type games are investigated for a class of coupled stochastic linear multi-agent systems with uncertainties of unknown structure parameters, external stochastic disturbances, unmodeled dynamics, and unknown agents' interactions. The control goal is to make the states of all the agents converge to a desired function of the population state average (PSA). Due to the fact that only local information is available for each agent, the control is distributed. For the time-invariant parameter case, the extended least-squares algorithm, Nash certainty equivalence (NCE) principle, and certainty equivalence (CE) principle are used to estimate the unknown parameters and the PSA term, and to design adaptive control, respectively. Under some mild conditions, it is shown that the closed-loop system is almost surely uniformly stable with respect to the population number $N$; the estimate for the PSA term is strongly consistent; the adaptive control is almost surely an asymptotic Nash equilibrium. When the dynamics of each agent contains time-varying parameters and unmodeled dynamics, the projected least mean square (LMS) algorithm, NCE principle, and CE principle are adopted to estimate the unknown time-varying parameters, and the unknown PSA term, and to design robust adaptive control, respectively. In addition to stability of the closed-loop system and consistency of the PSA estimate, the control law is shown to be robust Nash equilibrium with respect to the unmodeled dynamics, the variation of the unknown parameters, and the external disturbances. Two numerical examples are given to illustrate the methods and results of this paper.
机译:针对一类具有未知结构参数,外部随机扰动,未建模动力学和未知智能体相互作用的不确定性的耦合随机线性多智能体系统,研究了分布式自适应跟踪型博弈。控制目标是使所有代理的状态收敛到总体状态平均值(PSA)的所需函数。由于只有本地信息可用于每个代理程序,因此分发了控件。对于时不变参数的情况,使用扩展最小二乘算法,纳什确定性等效性(NCE)原理和确定性等效性(CE)原理分别估计未知参数和PSA项,并设计自适应控制。在某些温和的条件下,证明了闭环系统相对于人口数$ N $几乎可以肯定是一致稳定的; PSA期限的估算高度一致;自适应控制几乎肯定是渐近Nash平衡。当每个代理的动力学包含时变参数和未建模的动力学时,采用投影最小均方(LMS)算法,NCE原理和CE原理估计未知的时变参数和未知的PSA项,并分别设计鲁棒的自适应控制。除了闭环系统的稳定性和PSA估计的一致性外,控制律还表现出相对于未建模动力学,未知参数变化和外部干扰具有鲁棒的Nash平衡。给出两个数值例子来说明本文的方法和结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号