首页> 外文期刊>IEEE Transactions on Automatic Control >Forward Invariance of Sets for Hybrid Dynamical Systems (Part I)
【24h】

Forward Invariance of Sets for Hybrid Dynamical Systems (Part I)

机译:混合动力系统集的前向不变性(第I部分)

获取原文
获取原文并翻译 | 示例

摘要

In this paper, tools to study forward invariance properties with robustness to disturbances, referred to as robust forward invariance, are proposed for hybrid dynamical systems modeled as hybrid inclusions. Hybrid inclusions are given in terms of differential and difference inclusions with state and disturbance constraints, for whose definition only four objects are required. The proposed robust forward invariance notions allow for the diverse type of solutions to such systems (with and without disturbances), including solutions that have persistent flows and jumps, that are Zeno, and that stop to exist after finite amount of (hybrid) time. Sufficient conditions for sets to enjoy such properties are presented. These conditions are given in terms of the objects defining the hybrid inclusions and the set to be rendered robust forward invariant. In addition, as special cases, these conditions are exploited to state results on nominal forward invariance for hybrid systems without disturbances. Furthermore, results that provide conditions to render the sublevel sets of Lyapunov-like functions forward invariant are established. Analysis of a controlled inverter system is presented as an application of our results. Academic examples are given throughout this paper to illustrate the main ideas.
机译:在本文中,提出了一种以稳健性为扰乱的稳健性的前向不变性的工具,用于混合动态系统被建模为混合夹杂物。在具有状态和干扰约束的差分和差异夹杂物方面给出了混合夹杂物,其定义仅需要四个物体。所提出的强大的前向不变性概念允许对这种系统(具有扰乱)的各种类型的解决方案(有扰动),包括具有持久流量和跳跃的解决方案,即ZENO,并且在有限量(混合)时间后停止存在。展示了享受此类属性的足够条件。根据定义混合夹杂物的对象和设置为稳健的前向不变量的对象给出了这些条件。此外,作为特殊情况,这些条件被利用到州的结果对混合系统的名义前向不变性,没有干扰。此外,建立了提供渲染Lyapunov样函数前进不变的条件的结果。对受控逆变器系统的分析作为我们的结果应用。在本文中给出了学术例子以说明主要思想。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号