首页> 外文期刊>IEEE Transactions on Automatic Control >Distributed Newton Method for Large-Scale Consensus Optimization
【24h】

Distributed Newton Method for Large-Scale Consensus Optimization

机译:大规模共识优化的分布式牛顿法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a distributed Newton method for decenteralized optimization of large sums of convex functions. Our proposed method is based on creating a set of separable finite sum minimization problems by utilizing a decomposition technique known as Global Consensus that distributes the computation across nodes of a graph and enforces a consensus constraint among the separated variables. The key idea is to exploit the sparsity of the dual Hessian and recast the computation of the Newton step as one of the efficiently solving symmetric diagonally dominant linear equations. We show that our method outperforms the state-of-the-art algorithms, including ADMM. We validate our algorithm both theoretically and empirically. On the theory side, we demonstrate that our algorithm exhibits superlinear convergence within a neighborhood of optimality. Empirically, we show the superiority of this new method on a variety of large-scale optimization problems. The proposed approach is scalable to large problems and has a low communication overhead.
机译:在本文中,我们提出了一种分布式牛顿方法,用于大凸函数和的偏心优化。我们提出的方法基于通过使用称为全局共识的分解技术创建一组可分离的有限和最小化问题的方法,该分解技术将计算分布在图的各个节点上,并在分离的变量之间实施共识约束。关键思想是利用对偶Hessian的稀疏性,并将牛顿步长的计算重铸为有效求解对称对角占优线性方程组之一。我们证明了我们的方法优于包括ADMM在内的最新算法。我们在理论上和经验上都验证了我们的算法。从理论上讲,我们证明了我们的算法在最优邻域内表现出超线性收敛。从经验上,我们证明了这种新方法在各种大规模优化问题上的优越性。所提出的方法可扩展到大问题并且具有低通信开销。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号