首页> 外文OA文献 >Distributed Newton Methods for Strictly Convex Consensus Optimization Problems in Multi-Agent Networks
【2h】

Distributed Newton Methods for Strictly Convex Consensus Optimization Problems in Multi-Agent Networks

机译:多算法网络中严格凸的共识优化问题的分布式牛顿方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Various distributed optimization methods have been developed for consensus optimization problems in multi-agent networks. Most of these methods only use gradient or subgradient information of the objective functions, which suffer from slow convergence rate. Recently, a distributed Newton method whose appeal stems from the use of second-order information and its fast convergence rate has been devised for the network utility maximization (NUM) problem. This paper contributes to this method by adjusting it to a special kind of consensus optimization problem in two different multi-agent networks. For networks with Hamilton path, the distributed Newton method is modified by exploiting a novel matrix splitting techniques. For general connected multi-agent networks, the algorithm is trimmed by combining the matrix splitting technique and the spanning tree for this consensus optimization problems. The convergence analyses show that both modified distributed Newton methods enable the nodes across the network to achieve a global optimal solution in a distributed manner. Finally, the distributed Newton method is applied to solve a problem which is motivated by the Kuramoto model of coupled nonlinear oscillators and the numerical results illustrate the performance of the proposed algorithm.
机译:已经开发了各种分布式优化方法,用于多功能网络中的共识优化问题。这些方法中的大多数仅使用物理函数的梯度或子效应信息,这遭受缓慢的收敛速度。最近,已经设计了一种分布式牛顿方法,其上诉源于使用二阶信息的使用及其快速收敛速度,用于网络实用程序最大化(NUM)问题。本文通过将其调整为两种不同的多代理网络中的特殊共识优化问题,有助于这种方法。对于具有Hamilton路径的网络,通过利用新颖的矩阵分裂技术来修改分布式牛顿方法。对于一般连接的多代理网络,通过组合矩阵分割技术和生成树来修剪该算法以进行这种共识优化问题。收敛分析表明,两种修改的分布式牛顿方法都使得网络中的节点以分布式方式实现全局最佳解决方案。最后,应用分布式牛顿方法来解决由耦合非线性振荡器的Kuramoto模型而激励的问题,数值结果说明了所提出的算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号