首页> 外文期刊>Automatic Control, IEEE Transactions on >Plug-and-Play Fault Detection and Isolation for Large-Scale Nonlinear Systems With Stochastic Uncertainties
【24h】

Plug-and-Play Fault Detection and Isolation for Large-Scale Nonlinear Systems With Stochastic Uncertainties

机译:具有随机不确定性的大型非线性系统的即插即用故障检测与隔离

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel scalable model-based fault detection and isolation approach for the monitoring of nonlinear large-scale systems, consisting of a network of interconnected subsystems. The fault diagnosis architecture is designed to automatically manage the possible plug-in of novel subsystems and unplugging of existing ones. The reconfiguration procedure involves only local operations and communication with neighboring subsystems, thus, yielding adistributed and scalablearchitecture. In particular, the proposed fault diagnosis methodology allows the unplugging of faulty subsystems in order to possibly avoid the propagation of faults in the interconnected large-scale system. Measurement and process uncertainties are characterized in a probabilistic way leading to the computation, at each time-step, of stochastic time-varying detection thresholds with guaranteed false-alarms probability levels. To achieve this goal, we develop a distributed state estimation scheme, using a consensus-like approach for the estimation of variables shared among more than one subsystem; the time-varying consensus weights are designed to allow plug-in and unplugging operations and to minimize the variance of the uncertainty of the fault diagnosis thresholds. Convergence results of the distributed estimation scheme are provided. A novel fault isolation method is then proposed, based on a generalized observer scheme and providing guaranteed error probabilities of the fault exclusion task. Detectability and isolability conditions are provided. Simulation results on a power network model comprising 15 generation areas show the effectiveness of the proposed methodology.
机译:本文提出了一种新颖的基于可伸缩模型的故障检测和隔离方法,用于监视非线性大型系统,该系统由相互连接的子系统组成。故障诊断体系结构旨在自动管理新型子系统的可能插件,并拔出现有子系统的插件。重新配置过程仅涉及本地操作以及与相邻子系统的通信,因此产生 n <斜体xmlns:mml = “ http://www.w3.org/1998/Math/MathML ” xmlns:xlink = “ http://www.w3.org/1999/xlink “>分布式且可扩展的 n体系结构。特别地,提出的故障诊断方法允许拔出故障子系统,以便可能避免故障在互连的大规模系统中传播。测量和过程不确定性的特征在于概率,导致在每个时间步长上计算随机时变检测阈值并保证错误警报概率水平。为了实现这一目标,我们开发了一种分布式状态估计方案,使用一种类似共识的方法来估计多个子系统之间共享的变量。时变共识权重旨在允许插入和拔出操作,并最大程度地减少故障诊断阈值不确定性的差异。提供了分布式估计方案的收敛结果。然后,提出了一种基于广义观测器方案的故障隔离方法,该方法提供了故障排除任务的有保证的错误概率。提供了可检测性和可分离性条件。在包含15个发电区域的电网模型上的仿真结果表明了所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号