首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Combined Features and Kernel Design for Noise Robust Phoneme Classification Using Support Vector Machines
【24h】

Combined Features and Kernel Design for Noise Robust Phoneme Classification Using Support Vector Machines

机译:支持向量机的鲁棒音素分类的组合特征和内核设计

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes methods for combining cepstral and acoustic waveform representations for a front-end of support vector machine (SVM)-based speech recognition systems that are robust to additive noise. The key issue of kernel design and noise adaptation for the acoustic waveform representation is addressed first. Cepstral and acoustic waveform representations are then compared on a phoneme classification task. Experiments show that the cepstral features achieve very good performance in low noise conditions, but suffer severe performance degradation already at moderate noise levels. Classification in the acoustic waveform domain, on the other hand, is less accurate in low noise but exhibits a more robust behavior in high noise conditions. A combination of the cepstral and acoustic waveform representations achieves better classification performance than either of the individual representations over the entire range of noise levels tested, down to - 18-dB SNR.
机译:本文提出了一种方法,用于对基于支持向量机(SVM)的语音识别系统的前端的倒谱和声学波形表示进行组合,该方法对加性噪声具有鲁棒性。首先要解决内核设计和噪声波形表示的自适应问题。然后在音素分类任务上比较倒谱和声学波形表示。实验表明,倒谱特征在低噪声条件下可以达到很好的性能,但是在中等噪声水平下,其倒谱性能已经严重下降。另一方面,在声波形域中的分类在低噪声下准确性较差,但在高噪声条件下表现出更强健的性能。在整个测试噪声水平范围内(低至-18 dB SNR),倒频谱波形图和声学波形表示的组合比单个表示中的任何一种都具有更好的分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号