首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Robust Speaker Recognition Using Denoised Vocal Source and Vocal Tract Features
【24h】

Robust Speaker Recognition Using Denoised Vocal Source and Vocal Tract Features

机译:使用降噪后的人声源和人声道功能进行可靠的说话人识别

获取原文
获取原文并翻译 | 示例

摘要

To alleviate the problem of severe degradation of speaker recognition performance under noisy environments because of inadequate and inaccurate speaker-discriminative information, a method of robust feature estimation that can capture both vocal source- and vocal tract-related characteristics from noisy speech utterances is proposed. Spectral subtraction, a simple yet useful speech enhancement technique, is employed to remove the noise-specific components prior to the feature extraction process. It has been shown through analytical derivation, as well as by simulation results, that the proposed feature estimation method leads to robust recognition performance, especially at low signal-to-noise ratios. In the context of Gaussian mixture model-based speaker recognition with the presence of additive white Gaussian noise, the new approach produces consistent reduction of both identification error rate and equal error rate at signal-to-noise ratios ranging from 0 to 15 dB.
机译:为了缓解由于不充分和不准确的说话人区分信息而在嘈杂环境下说话人识别性能严重下降的问题,提出了一种能够从嘈杂的语音中捕获语音源和声道相关特性的鲁棒特征估计方法。频谱减法是一种简单而有用的语音增强技术,用于在特征提取过程之前去除特定于噪声的分量。通过分析推导以及仿真结果表明,所提出的特征估计方法可带来鲁棒的识别性能,尤其是在低信噪比的情况下。在基于高斯混合模型的说话人识别中,存在加性高斯白噪声的情况下,新方法可以在信噪比范围为0至15 dB的情况下,持续降低识别错误率和相等错误率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号