首页> 中文期刊> 《计算机系统应用》 >多声源环境下的鲁棒说话人识别

多声源环境下的鲁棒说话人识别

     

摘要

针对多声源干扰环境下说话人识别系统性能急剧下降的问题,提出一种提取目标语音的前端处理方法,该方法依据独立语音时频域的近似稀疏性,基于目标语音方位信息采用非线性时频掩蔽方法提取目标语音。建立了基于梅尔倒谱系数(MFCC)的高斯混合模型(GMM)说话人识别系统。仿真实验证明,该方法能有效提取目标语音,提高说话人识别系统的鲁棒性。该文多声源干扰仿真实验条件下,说话人识别系统的识别率平均提高了25%左右。%The Speaker Recognition System is significantly affected by the Multi-Sound sources problem. In order to overcome this problem, a target sound extraction algorithm named time-frequency masking is proposed. The proposed algorithm is based on the sound source azimuth information and the approximate sparse nature of sound. A Mel-frequency cepstral coefficient (MFCC) based Gaussian mixture model (GMM) speaker recognition system is presented to improve the recognition robustness. The proposed algorithm has been tested on the simulated data through a number of experiments which shows the efficiency and robustness of the proposed algorithm. In the Multi-Sound sources environment, the recognition rate of the proposed algorithm can be improved by about 25%.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号