首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Unbiased MMSE-Based Noise Power Estimation With Low Complexity and Low Tracking Delay
【24h】

Unbiased MMSE-Based Noise Power Estimation With Low Complexity and Low Tracking Delay

机译:低复杂度和低跟踪延迟的基于MMSE的无偏噪声功率估计

获取原文
获取原文并翻译 | 示例

摘要

Recently, it has been proposed to estimate the noise power spectral density by means of minimum mean-square error (MMSE) optimal estimation. We show that the resulting estimator can be interpreted as a voice activity detector (VAD)-based noise power estimator, where the noise power is updated only when speech absence is signaled, compensated with a required bias compensation. We show that the bias compensation is unnecessary when we replace the VAD by a soft speech presence probability (SPP) with fixed priors. Choosing fixed priors also has the benefit of decoupling the noise power estimator from subsequent steps in a speech enhancement framework, such as the estimation of the speech power and the estimation of the clean speech. We show that the proposed speech presence probability (SPP) approach maintains the quick noise tracking performance of the bias compensated minimum mean-square error (MMSE)-based approach while exhibiting less overestimation of the spectral noise power and an even lower computational complexity.
机译:最近,已经提出了通过最小均方误差(MMSE)最优估计来估计噪声功率谱密度。我们表明,所得的估计器可以解释为基于语音活动检测器(VAD)的噪声功率估计器,其中仅在发出语音缺失信号时才更新噪声功率,并用所需的偏置补偿进行补偿。我们表明,当用固定先验的软语音存在概率(SPP)替换VAD时,不需要进行偏差补偿。选择固定的先验还具有将噪声功率估计器与语音增强框架中的后续步骤解耦的优势,例如语音功率的估计和纯净语音的估计。我们表明,提出的语音存在概率(SPP)方法保持了基于偏差补偿最小均方误差(MMSE)的方法的快速噪声跟踪性能,同时展现出频谱噪声功率的过高估计和更低的计算复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号