首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Structured SVMs for Automatic Speech Recognition
【24h】

Structured SVMs for Automatic Speech Recognition

机译:用于自动语音识别的结构化SVM

获取原文
获取原文并翻译 | 示例

摘要

Structured discriminative models are a flexible sequence classification approach that enable a wide variety of features to be used. This paper describes a particular model in this framework, structured support vector machines (SSVM), and how it can be applied to medium to large vocabulary speech recognition tasks. An important aspect of SSVMs is the form of the joint feature spaces. Here, context-dependent generative models, hidden Markov models, are used to obtain the features. To apply this form of combined generative and discriminative model to medium and larger vocabulary tasks, a number of issues need to be addressed. First, the features extracted are a function of the segmentation of the utterance. A Viterbi-like scheme for obtaining the “optimal” segmentation is described. Second, SSVMs can be viewed as large margin log linear models using a zero mean Gaussian prior of the discriminative parameter. However this form of prior is not appropriate for all features. A modified training algorithm is proposed that allows general Gaussian priors to be incorporated into the large margin criterion. Finally to speed up the training process, a 1-slack algorithm, caching competing hypotheses and parallelization strategies are also described. The performance of SSVMs is evaluated on small and medium to large speech recognition tasks: AURORA 2 and 4.
机译:结构判别模型是一种灵活的序列分类方法,可以使用多种功能。本文介绍了此框架中的特定模型,结构化支持向量机(SSVM),以及如何将其应用于中到大型词汇语音识别任务。 SSVM的一个重要方面是联合特征空间的形式。在这里,使用上下文相关的生成模型,隐马尔可夫模型来获取特征。为了将这种形式的生成式和判别式组合模型应用于中等和较大的词汇任务,需要解决许多问题。首先,提取的特征是话语分割的函数。描述了用于获得“最佳”分割的类似于维特比的方案。其次,可以使用判别参数之前的零均值高斯模型将SSVM视为大边际对数线性模型。但是,这种形式的先验并不适合所有功能。提出了一种改进的训练算法,该算法允许将一般的高斯先验合并到大余量准则中。最后,为了加快训练过程,还介绍了一种1松弛算法,缓存竞争假设和并行化策略。 SSVM的性能是在中小型到大型语音识别任务AURORA 2和4。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号