首页> 外文期刊>Asymptotic analysis >On error bounds for monotone approximation schemes for multi-dimensional Isaacs equations
【24h】

On error bounds for monotone approximation schemes for multi-dimensional Isaacs equations

机译:多维Isaacs方程单调逼近方案的误差界

获取原文
获取原文并翻译 | 示例

摘要

Recently, Krylov, Barles, and Jakobsen developed the theory for estimating errors of monotone approximation schemes for the Bellman equation (a convex Isaacs equation). In this paper we consider an extension of this theory to a class of non-convex multidimensional Isaacs equations. This is the first result of this kind for non-convex multidimensional fully non-linear problems. To get the error bound, a key intermediate step is to introduce a penalization approximation. We conclude by (ⅰ) providing new error bounds for penalization approximations extending earlier results by, e.g., Bensoussan and Lions, and (ⅱ) obtaining error bounds for approximation schemes for the penalization equation using very precise a priori bounds and a slight generalization of the recent theory of Krylov, Barles, and Jakobsen.
机译:最近,Krylov,Barles和Jakobsen开发了一种理论,用于估计Bellman方程(凸Isaacs方程)的单调逼近方案的误差。在本文中,我们考虑将此理论扩展到一类非凸的多维Isaacs方程。这是此类非凸多维完全非线性问题的第一个结果。为了获得误差范围,关键的中间步骤是引入罚分近似。我们的结论是(ⅰ)为惩罚近似提供新的误差范围,扩展了例如Bensoussan和Lions的较早结果,并且(using)使用非常精确的先验界限和对误差的略微推广获得了惩罚方程近似方案的误差范围。 Krylov,Barles和Jakobsen的最新理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号