首页> 外文期刊>Assembly Automation >Concurrent-learning-based visual servo tracking and scene identification of mobile robots
【24h】

Concurrent-learning-based visual servo tracking and scene identification of mobile robots

机译:基于学习的基于学习的Visual Servo跟踪和移动机器人的场景识别

获取原文
获取原文并翻译 | 示例

摘要

Purpose The purpose of this paper is to present a visual servo tracking strategy for the wheeled mobile robot, where the unknown feature depth information can be identified simultaneously in the visual servoing process. Design/methodology/approach By using reference, desired and current images, system errors are constructed by measurable signals that are obtained by decomposing Euclidean homographies. Subsequently, by taking the advantage of the concurrent learning framework, both historical and current system data are used to construct an adaptive updating mechanism for recovering the unknown feature depth. Then, the kinematic controller is designed for the mobile robot to achieve the visual servo trajectory tracking task. Lyapunov techniques and LaSalle's invariance principle are used to prove that system errors and the depth estimation error converge to zero synchronously. Findings The concurrent learning-based visual servo tracking and identification technology is found to be reliable, accurate and efficient with both simulation and comparative experimental results. Both trajectory tracking and depth estimation errors converge to zero successfully. Originality/value On the basis of the concurrent learning framework, an adaptive control strategy is developed for the mobile robot to successfully identify the unknown scene depth while accomplishing the visual servo trajectory tracking task.
机译:目的本文的目的是为轮式移动机器人提供视觉伺服跟踪策略,其中可以在视觉伺服处理中同时识别未知特征深度信息。设计/方法/方法通过使用参考,期望和当前图像,通过通过分解欧几里德沉默获得的可测量信号来构造系统误差。随后,通过采取并发学习框架的优点,历史和当前系统数据都用于构造用于恢复未知特征深度的自适应更新机制。然后,运动控制器专为移动机器人设计,以实现视觉伺服轨迹跟踪任务。 Lyapunov技术和Lasalle的不变原理用于证明系统错误和深度估计误差会聚到零。调查结果表明基于学习的可视伺服跟踪和识别技术,仿真和比较实验结果可靠,准确和高效。轨迹跟踪和深度估计误差都会成功收敛到零。原创性/值基于并发学习框架,为移动机器人开发了自适应控制策略,以在完成视觉伺服轨迹跟踪任务的同时成功识别未知场景深度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号