首页> 外文期刊>Artificial life and robotics >Estimation of personal driving style via deep inverse reinforcement learning
【24h】

Estimation of personal driving style via deep inverse reinforcement learning

机译:深度逆钢筋学习估算个人驾驶风格

获取原文
获取原文并翻译 | 示例

摘要

When applying autonomous driving technology in human-crewed vehicles, it is essential to consider the personal driving style with ensuring not only safety but also the driver's preference. Reinforcement learning (RL) has attracted much attention in the field of autonomous driving; however, it requires a finely tuned reward function. A method for tasks that are difficult to design reward functions, such as reproducing a personal driving style, is inverse reinforcement learning (IRL). Although IRL is commonly applied to the estimation of human and animal intentions, most previous methods require high computational costs to compute inner loop RL. For the problem of inner loop RL, Logistic Regression-Based IRL (LogReg-IRL), which does not require RL for reward estimation, is available. Moreover, LogReg-IRL can compute a value function as well as a reward function of the driver's own. Therefore, this paper proposes a method to estimate the latent driving preferences (called driving style) of a driver using the rewards and values obtained by applying LogReg-IRL. Several experimental results show that the proposed method could reproduce the original trajectory and quantify the driver's implicit preference.
机译:在人营业车辆中应用自主驾驶技术时,必须考虑个人驾驶风格,不仅可以确保安全性,还要考虑驾驶员的偏好。强化学习(RL)在自主驾驶领域引起了很多关注;但是,它需要精细调整的奖励功能。一种难以设计奖励功能的任务的方法,例如再现个人驾驶风格,是倒加强学习(IRL)。虽然IRL通常应用于人类和动物意图的估计,但最先前的方法需要高计算成本来计算内环RL。对于内循环RL的问题,可用的基于逻辑回归的IRL(LOGREG-IRL),其不需要RL奖励估计。此外,Logreg-IRL可以计算价值函数以及驱动程序自己的奖励功能。因此,本文提出了一种使用通过应用Logreg-IRL获得的奖励和值来估计驾驶员的潜在驾驶偏好(称为驱动风格)的方法。几个实验结果表明,该方法可以再现原始轨迹并量化驾驶员的隐式偏好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号