首页> 外文期刊>Artificial life and robotics >Detection of unreliable and reliable pages on Facebook
【24h】

Detection of unreliable and reliable pages on Facebook

机译:在Facebook上检测不可靠和可靠的页面

获取原文
获取原文并翻译 | 示例

摘要

Currently, the number of Facebook pages is dramatically increased on Facebook because the users can easily create their own pages for free to promote their products and services for marketing purposes. Unfortunately, some of pages are created for malicious intention. Therefore, detecting and identifying malicious Facebook pages is a challenging task. To achieve the task, features extracted from four parts of pages, i.e., page details, product/service details, user responses and post behavior of administrator are examined for the detection. The extracted features are investigated to detect reliable and unreliable pages based on supervised machine learning. First, Facebook pages are randomly collected and then they are labeled by five users. Facebook pages with agreement of five users are selected and their information are retrieved using the Facebook Graph API. Next, features are extracted from the information and investigated in the experiments. The experimental results indicate that the classification prediction is improved to 91.37% of accuracy. Finally, the significant features are analyzed to distinguish between unreliable and reliable pages.
机译:目前,Facebook的Facebook页数大幅增加,因为用户可以轻松创建自己的页面,以便自由促进其产品和服务以进行营销目的。不幸的是,一些页面是为了恶意意图而创建的。因此,检测和识别恶意Facebook页面是一个具有挑战性的任务。为了实现任务,检查了从页面的四个部分中提取的功能,即页面详细信息,产品/服务详细信息,用户响应和管理员的发布行为。研究了提取的特征,以检测基于监督机器学习的可靠和不可靠的页面。首先,随机收集Facebook页面,然后它们由五个用户标记。选择具有五个用户协议的Facebook页面,并使用Facebook图形API检索其信息。接下来,从信息中提取特征并在实验中进行研究。实验结果表明,分类预测得到了准确性的91.37%。最后,分析了显着的特征以区分不可靠和可靠的页面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号