首页> 外文期刊>Artificial life and robotics >A deep unified framework for suspicious action recognition
【24h】

A deep unified framework for suspicious action recognition

机译:一个深度统一的可疑动作识别框架

获取原文
获取原文并翻译 | 示例

摘要

As action recognition undergoes change as a field under influence of the recent deep learning trend, and while research in areas such as background subtraction, object segmentation and action classification is steadily progressing, experiments devoted to evaluate a combination of the aforementioned fields, be it from a speed or a performance perspective, are far and few between. In this paper, we propose a deep, unified framework targeted towards suspicious action recognition that takes advantage of recent discoveries, fully leverages the power of convolutional neural networks and strikes a balance between speed and accuracy not accounted for in most research. We carry out performance evaluation on the KTH dataset and attain a 95.4% accuracy in 200 ms computational time, which compares favorably to other state-of-the-art methods. We also apply our framework to a video surveillance dataset and obtain 91.9% accuracy for suspicious actions in 205 ms computational time.
机译:由于行动识别在近期深度学习趋势的影响下,作为一个领域的变化,而在背景减法,对象分割和动作分类等领域的研究稳步前进,致力于评估上述领域的组合的实验,而是来自速度或性能观点,远远少。在本文中,我们提出了一个深入的统一框架,针对可疑的行动识别,利用最近的发现,充分利用了卷积神经网络的力量,并在大多数研究中不占速度和准确性之间的平衡。我们对KTH数据集进行性能评估,并在200毫秒的计算时间内获得95.4%的准确性,这与其他最先进的方法有利相比。我们还将框架应用于视频监控数据集,并在205毫秒计算时间内获得91.9%的可疑动作的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号