首页> 外文期刊>Artificial life and robotics >Traffic signal control based on a predicted traffic jam distribution
【24h】

Traffic signal control based on a predicted traffic jam distribution

机译:基于预测的交通拥堵分布的交通信号控制

获取原文
获取原文并翻译 | 示例

摘要

In this article, we propose a new method of traffic signal control based on the predicted distribution of traffic jams. First, we built a forecasting model to predict the probability distribution of vehicles being in a traffic jam during each period of the traffic signals. A dynamic Bayesian network was used as the forecasting model, and this predicted the probability distribution of the number of standing vehicles in a traffic jam. According to calculations by the dynamic Bayesian network, a prediction of the probability distribution of the number of standing vehicles at each time will be obtained, and a control rule to adjust the split and cycle of the signals to maintain the probability of a lower limit and a ceiling of standing vehicles is deduced. Through a simulation using the actual traffic data of a city, the effectiveness of our method is shown.
机译:在本文中,我们提出了一种基于交通拥堵预测分布的交通信号控制新方法。首先,我们建立了一个预测模型,以预测在每个交通信号周期内处于交通拥堵状态的车辆的概率分布。动态贝叶斯网络被用作预测模型,它预测了交通拥堵中站立车辆数量的概率分布。根据动态贝叶斯网络的计算,将获得每次站立车辆数量的概率分布的预测,并获得控制规则,以调整信号的分割和周期以保持下限概率和推导出站立式车辆的天花板。通过使用城市的实际交通数据进行的仿真,显示了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号