首页> 外文期刊>Artificial life and robotics >A random-forests-based classifier using class association rules and its application to an intrusion detection system
【24h】

A random-forests-based classifier using class association rules and its application to an intrusion detection system

机译:使用类关联规则的基于随机森林的分类器及其在入侵检测系统中的应用

获取原文
获取原文并翻译 | 示例

摘要

With the rapid developments of network technology, devices connected to the network in a variety of fields have increased, and then, network security has become more important. Rule-based classification for intrusion detection is useful, because it is not only easily understood by humans, but also accurate for the classification of new patterns. Genetic network programming (GNP) is one of the rule-mining techniques as well as the evolutionary-optimization techniques. It can extract rules efficiently even from an enormous database, but still needs more accuracy and stability for practical use. This paper describes a classification system with random forests, employing weighted majority vote in the classification to enhance its performance. For the performance evaluation, NSL-KDD (Network Security Laboratory-Knowledge Discovery and Data Mining) data set is used and the proposed method is compared with the conventional methods, including other machine-learning techniques (Random forests, SVM, J4.8) in terms of the accuracy and false positive rate.
机译:随着网络技术的飞速发展,在各个领域连接到网络的设备都在增加,因此,网络安全变得越来越重要。基于规则的入侵检测分类非常有用,因为它不仅容易为人所理解,而且对于新模式的分类也是准确的。遗传网络编程(GNP)是规则挖掘技术和进化优化技术之一。它甚至可以从庞大的数据库中高效地提取规则,但在实际使用中仍需要更高的准确性和稳定性。本文描述了一种具有随机森林的分类系统,在分类中采用加权多数投票以提高其性能。为了进行性能评估,使用了NSL-KDD(网络安全实验室-知识发现和数据挖掘)数据集,并将所提出的方法与常规方法进行了比较,包括其他机器学习技术(随机森林,SVM,J4.8)在准确性和误报率方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号