首页> 外文期刊>Artificial intelligence >Speeding up operations on feature terms using constraint programming and variable symmetry
【24h】

Speeding up operations on feature terms using constraint programming and variable symmetry

机译:使用约束编程和变量对称性加速特征项的操作

获取原文
获取原文并翻译 | 示例

摘要

Feature terms are a generalization of first-order terms which have recently received increased attention for their usefulness in structured machine learning, natural language processing and other artificial intelligence applications. One of the main obstacles for their wide usage is that, when set-valued features are allowed, their basic operations (subsumption, unification, and antiunification) have a very high computational cost We present a Constraint Programming formulation of these operations, which in some cases provides orders of magnitude speed-ups with respect to the standard approaches. In addition, exploiting several symmetries - that often appear in feature terms databases -causes substantial additional savings. We provide experimental results of the benefits of this approach.
机译:特征项是一阶项的概括,由于其在结构化机器学习,自然语言处理和其他人工智能应用中的实用性,最近受到了越来越多的关注。广泛使用它们的主要障碍之一是,当允许使用集值功能时,其基本运算(包含,统一和反统一)的计算成本很高。我们提出了这些运算的约束编程公式,在某些情况下案例提供了相对于标准方法的数量级加速。此外,利用几种对称性(通常出现在特征术语数据库中)会带来大量的额外节省。我们提供了这种方法的好处的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号