...
首页> 外文期刊>Archives of Computational Methods in Engineering >The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models
【24h】

The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models

机译:有限元方法:CAD和基于图像的几何模型的高阶结构分析中的回顾

获取原文
           

摘要

The finite cell method is an embedded domain method, which combines the fictitious domain approach with higher-order finite elements, adaptive integration, and weak enforcement of unfitted essential boundary conditions. Its core idea is to use a simple unfitted structured mesh of higher-order basis functions for the approximation of the solution fields, while the geometry is captured by means of adaptive quadrature points. This eliminates the need for boundary conforming meshes that require time-consuming and error-prone mesh generation procedures, and opens the door for a seamless integration of very complex geometric models into finite element analysis. At the same time, the finite cell method achieves full accuracy, i.e. optimal rates of convergence, when the mesh is refined, and exponential rates of convergence, when the polynomial degree is increased. Due to the flexibility of the quadrature based geometry approximation, the finite cell method can operate with almost any geometric model, ranging from boundary representations in computer aided geometric design to voxel representations obtained from medical imaging technologies. In this review article, we first provide a concise introduction to the basics of the finite cell method. We then summarize recent developments of the technology, with particular emphasis on the research topics in which we have been actively involved. These include the finite cell method with B-spline and NURBS basis functions, the treatment of geometric nonlinearities for large deformation analysis, the weak enforcement of boundary and coupling conditions, and local refinement schemes. We illustrate the capabilities and advantages of the finite cell method with several challenging examples, e.g. the image-based analysis of foam-like structures, the patient-specific analysis of a human femur bone, the analysis of volumetric structures based on CAD boundary representations, and the isogeometric treatment of trimmed NURBS surfaces. We conclude our review by briefly discussing some key aspects for the efficient implementation of the finite cell method.
机译:有限元方法是一种嵌入式域方法,它结合了虚拟域方法和高阶有限元,自适应积分以及对不适合的基本边界条件的弱执行。它的核心思想是使用简单的未拟合的具有高阶基函数的结构化网格来逼近解场,同时通过自适应正交点捕获几何。这就消除了需要耗时且容易出错的网格生成程序的边界合一网格的需要,并为将非常复杂的几何模型无缝集成到有限元分析中打开了大门。同时,有限元方法可以达到完全的精度,即当细化网格时达到最佳收敛速度,而当多项式增加时则达到指数收敛速度。由于基于正交的几何逼近的灵活性,有限元方法几乎可以在任何几何模型中运行,范围从计算机辅助几何设计中的边界表示到从医学成像技术获得的体素表示。在这篇评论文章中,我们首先简要介绍有限元方法的基础。然后,我们总结了该技术的最新发展,特别强调了我们一直积极参与的研究主题。这些方法包括具有B样条和NURBS基函数的有限单元法,用于大变形分析的几何非线性处理,边界和耦合条件的强制性较弱以及局部优化方案。我们通过几个具有挑战性的示例来说明有限元方法的功能和优势,例如基于图像的泡沫状结构分析,针对患者的股骨分析,基于CAD边界表示的体积结构分析以及修剪后的NURBS表面的等几何处理。我们通过简要讨论有限单元法有效实施的一些关键方面来结束我们的综述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号