首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Geometric modeling, isogeometric analysis and the finite cell method
【24h】

Geometric modeling, isogeometric analysis and the finite cell method

机译:几何建模,等几何分析和有限元方法

获取原文
获取原文并翻译 | 示例

摘要

The advent of isogeometric analysis (IGA) using the same basis functions for design and analysis constitutes a milestone in the unification of geometric modeling and numerical simulation. However, an important class of geometric models based on the CSG (Constructive Solid Geometry) concept such as trimmed NURBS surfaces do not fully support the isogeometric paradigm, since basis functions do not explicitly represent the boundary. The finite cell method (FCM) is a high-order fictitious domain method, which offers simple meshing of potentially complex domains into a structured grid of cuboid cells, while still achieving exponential rates of convergence for smooth problems. In the present paper, we first discuss the possibility to directly couple the finite cell method to CSG, without any necessity for meshing the three-dimensional domain, and then explore a combination of the best of the two approaches IGA and FCM, closely following ideas of the recently introduced shell FCM. The resulting finite cell extension to isogeometric analysis achieves a truly straightforward transfer of a trimmed NURBS surface into an analysis suitable NURBS basis, while benefiting from the favorable properties of the high-order and high-continuity basis functions. Accuracy and efficiency of the new approach are demonstrated by a numerical benchmark, and its versatility is outlined by the analysis of different trimmed design variants of a brake disk.
机译:使用相同的基本功能进行设计和分析的等几何分析(IGA)的出现,是几何建模和数值模拟相统一的一个里程碑。但是,由于基函数不能明确表示边界,因此基于CSG(构造实体几何)概念的重要几何模型(例如修剪的NURBS曲面)不能完全支持等几何范例。有限元方法(FCM)是一种高阶虚拟域方法,它可以将潜在的复杂域简单地划分为长方体单元的结构化网格,同时仍能为平滑问题提供指数级的收敛速度。在本文中,我们首先讨论将有限元方法直接耦合到CSG的可能性,而无需划分三维域,然后紧接着遵循以下思路探索IGA和FCM两种方法的最佳组合最近推出的Shell FCM。到等几何分析的结果有限单元扩展实现了将修剪后的NURBS曲面真正简单地转换为适合NURBS分析的基础,同时得益于高阶和高连续性基础函数的良好特性。数值基准表明了这种新方法的准确性和效率,而其多功能性则通过对制动盘不同的修整设计方案进行了分析来概述。

著录项

  • 来源
  • 作者单位

    Computation in Engineering, Faculty of Civil Engineering and Geodesy, Technische Universitaet Muenchen, Arcisstr. 21, 80333 Munchen, Germany;

    Computation in Engineering, Faculty of Civil Engineering and Geodesy, Technische Universitaet Muenchen, Arcisstr. 21, 80333 Munchen, Germany;

    Computation in Engineering, Faculty of Civil Engineering and Geodesy, Technische Universitaet Muenchen, Arcisstr. 21, 80333 Munchen, Germany;

    Computation in Engineering, Faculty of Civil Engineering and Geodesy, Technische Universitaet Muenchen, Arcisstr. 21, 80333 Munchen, Germany;

    Numerische Strukturanalyse mit Anwendungen in der Schiffstechnik (M-10), Technische Universitaet Hamburg-Harburg, Schwarzenbergstr. 95c, 21073 Hamburg, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    finite cell method; fictitious domain method; embedding domain method; thin-walled structures; high-order methods; isogeometric analysis;

    机译:有限元法虚拟域方法;嵌入域方法;薄壁结构;高阶方法等几何分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号