首页> 外文期刊>Archives of Computational Methods in Engineering >A Comparative Study of Recent Optimization Methods for Optimal Sizing of a Green Hybrid Traction Power Supply Substation
【24h】

A Comparative Study of Recent Optimization Methods for Optimal Sizing of a Green Hybrid Traction Power Supply Substation

机译:绿色混合牵引电源变电站最近优化方法的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Although there is a premise that electric trains are zero-emission, their source of energy (fossil fuel power plants) pollutes the air in a place far from the consuming area (traction power supply substation). On the other hand, the price of generating electricity from fossil fuel resources has risen in the aftermath of their ever-decreasing sources. These two economic-environmental factors have caused Hybrid Renewable Energy Sources (HRESs) to be introduced as an alternative to fossil fuel ones. This paper proposes the concept of Green Hybrid Traction Power Supply Substation (GHTPS), that is, using renewable energy resources to meet a traction substation. To find the best size of HRES components having a minimum Lifecycle cost; an optimization method is essential. For this reason, a comparative study on the application of recent optimization methods is employed to find the optimum size of the proposed grid-connected PV/wind turbine traction substation. The optimization methods are: the Atom search optimization (ASO), Harris Hawks Optimization (HHO), Coyote Optimization Algorithm (COA), Multi-population Ensemble Differential Evolution (MPEDE), Bird Swarm Algorithm (BSA), Ant Lion Optimizer (ALO), Grey Wolf Optimizer (GWO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and HOMER software. Finally, a sensitivity analysis shows that increasing in the grid electricity price and decreasing the wind turbines investment cost could make renewable energies more economically competitive in the future. Besides Net Present Cost (NPC), Cost of Energy (COE), Payback Time (PT), and various emissions are studied, all of which verify the efficiency of the proposed system.
机译:虽然有一个前提是电动训练是零排放的前提,但它们的能量来源(化石燃料发电厂)污染了远离消费区域的地方(牵引力电源变电站)的空气。另一方面,在其未减少来源的后果之后,来自化石燃料资源的发电价格的价格已经上升。这两个经济环境因素导致混合可再生能源(女兽人)作为化石燃料燃料的替代品。本文提出了绿色混合牵引电源变电站(GHTPS)的概念,即使用可再生能源来满足牵引变电站。找到具有最小生命周期成本的HRES组件的最佳尺寸;优化方法是必不可少的。因此,采用对近期优化方法应用的比较研究找到所提出的网格连接的PV /风力涡轮机牵引变电站的最佳尺寸。优化方法是:原子搜索优化(ASO),Harris Hawks优化(HHO),Coyote优化算法(COA),多人集合差分演进(MESTE),Bird Sharm算法(BSA),蚂蚁狮子优化器(ALO) ,灰狼优化器(GWO),人造蜂菌落(ABC),粒子群优化(PSO),遗传算法(GA)和Homer软件。最后,敏感性分析表明,电网电价和减少风力涡轮机投资成本的增加可能会使可再生能源在未来更具经济竞争力。除了净目前的成本(NPC)外,研究了能量成本(COE),回收时间(PT)和各种排放,所有这些都验证了所提出的系统的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号