首页> 外文期刊>Archives of Computational Methods in Engineering >A Survey of Dictionary Learning in Medical Image Analysis and Its Application for Glaucoma Diagnosis
【24h】

A Survey of Dictionary Learning in Medical Image Analysis and Its Application for Glaucoma Diagnosis

机译:医学图像分析中的文化学学习调查及其对青光眼诊断的应用

获取原文
获取原文并翻译 | 示例

摘要

Dictionary learning has shown its effectiveness in computer vision with the concise expression form but the powerful representation. Dictionary learning represents images with a bag of visual words (BoVW), which is a collection of atoms expressively representative for images. Recently, several task-specific dictionary learning methods have been proposed and successfully applied in medical image analysis, such as de-noising, classification, segmentation, and so on, which promotes the development of computer-aided diagnosis. In this paper, first we give a survey for dictionary learning-based medical image analysis methods including: (1) three discriminative dictionary learning frameworks, (2) CT image de-noising based on dictionary learning, and (3) histopathological image classification using sparse representation. Then, a novel method named Low-rank Shared Dictionary Learning (LRSDL), is presented to achieve accurate glaucoma diagnosis on fundus images. The LRSDL generates a shared codebook for image reconstruction and a particular one to handle the difference between the healthy and glaucomatous images. Benefit from this strategy, LRSDL not only possess distinct glaucoma-related features, but also share common patterns among all the fundus images. Experimental results show that the method effectively delivers glaucoma diagnosis with the accuracy of 92.90%. This endows dictionary learning method a great potential for glaucoma diagnosis and proves the feasibility of its application to medical image analysis.
机译:字典学习在计算机愿景中显示了其具有简洁表达式的有效性,而是强大的代表性。字典学习代表与一袋视觉单词(BOVW)的图像,这是一系列特征性地代表图像的原子。最近,已经提出了几项任务特定的字典学习方法,并成功地应用于医学图像分析,例如去噪,分类,分割等,这促进了计算机辅助诊断的发展。在本文中,首先我们给出了基于词典的医学医学图像分析方法的调查,包括:(1)三个判别字典学习框架,(2)基于字典学习的CT图像去噪,(3)组织病理图像分类使用稀疏表示。然后,提出了一种名为低秩共享字典学习(LRSDL)的新方法,以实现对眼底图像的准确青光眼诊断。 LRSDL生成用于图像重建的共享码本,以及特定的电子书,以处理健康和青光眼图像之间的差异。从这种策略中受益,LRSDL不仅具有与众不同的青光眼相关的特征,而且还具有所有眼底图像中的常见模式。实验结果表明,该方法可有效地提供了92.90%的准确性的青光眼诊断。这赋予字典学习方法是青光眼诊断的巨大潜力,并证明了其应用于医学图像分析的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号