首页> 外文期刊>Archives of Computational Methods in Engineering >Review of Vehicle Detection Systems in Advanced Driver Assistant Systems
【24h】

Review of Vehicle Detection Systems in Advanced Driver Assistant Systems

机译:先进驾驶员辅助系统中的车辆检测系统的回顾

获取原文
获取原文并翻译 | 示例

摘要

Driverless cars and autonomous vehicles have significantly changed the face of transportation those days. Efficient use of vision system in the recent development of advanced driver assistance systems since last two decades have equipped cars and light vehicles to reduce accidents, congestion, crashes and pollution. The robust performance of the driver assistance systems absolutely depend on the flawless detection of the vehicles from the images. Developments of vigorous computer vision techniques based on various Image level features have enabled intelligent Transportation systems to solve some of the core challenges in vehicle detection. A detailed study of the vehicle detection in dynamic conditions is presented in this paper. The complexity of the vehicle detection in variable on-road driving conditions is evident from the diverse challenges illustrated in this paper. Dynamic vehicle detection mechanism has obviously attracted numerous approaches like feature based techniques and model based techniques. Different set of visual information representation as edge, shadow, light are used to detect the vehicles. Out of all low level features shape representation for vehicle detection is observed more efficient. The need of handling massive visual data for processing is addressed using novel feature representation like object proposal methods is discussed in more detail. The efficacy of ongoing research in Autonomous vehicles is validated using deep learning techniques on aerial image analysis.
机译:那些日子里,无人驾驶汽车和自动驾驶汽车极大地改变了交通运输的面貌。最近二十年来,在先进的驾驶员辅助系统的最新开发中,视觉系统得到了有效利用,它们已经装备了汽车和轻型车辆,以减少事故,交通拥堵,撞车和污染。驾驶员辅助系统的强大性能完全取决于从图像中对车辆的完美检测。基于各种图像级别功能的强大计算机视觉技术的发展使智能交通系统能够解决车辆检测中的一些核心挑战。本文对动态条件下的车辆检测进行了详细的研究。从本文阐述的各种挑战中可以明显看出,在变化的道路行驶条件下车辆检测的复杂性。动态车辆检测机制显然吸引了许多方法,例如基于特征的技术和基于模型的技术。使用不同的视觉信息表示集(如边缘,阴影,光线)来检测车辆。在所有低级特征中,可以更有效地观察到用于车辆检测的形状表示。使用新颖的特征表示(如对象提议方法)可以更详细地讨论处理大量视觉数据进行处理的需求。使用深度学习技术对航空影像进行分析,验证了自动驾驶汽车正在进行的研究的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号