首页> 外文期刊>Applied Surface Science >Heterostructural modulation of in situ growth of iron oxide/holey graphene framework nanocomposites as excellent electrodes for advanced lithium-ion batteries
【24h】

Heterostructural modulation of in situ growth of iron oxide/holey graphene framework nanocomposites as excellent electrodes for advanced lithium-ion batteries

机译:铁氧化物/孔石墨烯框架纳米复合材料作为高级锂离子电池的优异电极的异质结构调节

获取原文
获取原文并翻译 | 示例

摘要

Chemically integrated hybrid nanostructures of Fe2O3/holey graphene frameworks (Fe2O3/HGF) nanocomposites have been successfully synthesized via a glycerol activated process. Defected graphene oxides were first etched by a certain volume of hydrogen peroxide. Subsequently, multi-dimensionally nanosized Fe2O3 particles were generated and anchored on the defected graphene layers. Based on this method, the ability in synthesizing the exquisitely tune Fe2O3 nanoparticles with highly controllable nanostructures and desirable properties is demonstrated, ranging from zero-dimensional quantum dots (similar to 4.42 nm) to one-dimensional nanorods, and eventually to two-dimensional nanosheets. As anodes for lithium-ion batteries, these hybrid Fe2O3/holey graphene frameworks electrodes exhibit excellent cyclic stability at 1 A g(-1) after 500 cycles (73.59 mAh g(-1) for quantum dots Fe2O3/HGF electrodes, 695.4 mAh g(-1) for nanosheets Fe2O3/HGF electrodes and 805.6 mAh g(-1) for nanorods Fe2O3/HGF electrodes, respectively) and specific capacity retention at the current density of 4 A g(-1) (427.6 mAh g(-1) for quantum dots Fe2O3/HGF electrodes, 374.2 mAh g(-1) for nanosheets Fe2O3 /HGF electrodes and 473.5 mAh g(-1) for nanorods Fe2O3/HGF electrodes, respectively). This work reveals a facile way to modify the oxygenic defect sites of carbon-based materials, providing more attaching sites for metal oxides, and hopefully accelerating the commercialization of carbon-based nanocomposites as anodes for metal-ion batteries.
机译:通过甘油活化方法成功地合成了Fe2O3 / holey石墨烯框架(Fe 2 O 3 / HGF)纳米复合材料的化学集成的杂化纳米结构。首先通过一定体积的过氧化氢蚀刻缺陷的石墨烯氧化物。随后,产生多维纳米化Fe 2 O 3颗粒并锚定在缺陷的石墨烯层上。基于该方法,对具有高可控纳米结构和期望性质合成的精巧性曲调Fe2O3纳米颗粒的能力,从零维量子点(类似于4.42nm)到一维纳米码,最终到二维纳米液相色谱。作为用于锂离子电池的阳极,这些杂合Fe2O3 / holey石墨烯框架电极在500次循环后的1A G(-1)下具有优异的环状稳定性(对于量子点Fe2O3 / HGF电极,695.4mahg (-1)对于纳米液Fe2O3 / HGF电极的纳米蛋白酶Fe2O3 / HGF电极,分别为4Ag(-1)的电流密度的特定容量保持(427.6mahg(-1) )对于量子点Fe2O3 / HGF电极,374.2mAhg(-1)用于纳米蛋白酶Fe2O3 / HGF电极,分别用于纳米棒Fe2O3 / HGF电极的473.5mAhg(-1)。这项工作揭示了改变碳基材料的含氧缺陷部位的容易方式,为金属氧化物提供更多附着点,并希望将碳基纳米复合材料的商业化加速为金属离子电池的阳极。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号