首页> 外文期刊>Applied Surface Science >Heterostructural modulation of in situ growth of iron oxide/holey graphene framework nanocomposites as excellent electrodes for advanced lithium-ion batteries
【24h】

Heterostructural modulation of in situ growth of iron oxide/holey graphene framework nanocomposites as excellent electrodes for advanced lithium-ion batteries

机译:氧化铁/多孔石墨烯骨架纳米复合材料原位生长的异质结构调节,作为高级锂离子电池的极好电极

获取原文
获取原文并翻译 | 示例

摘要

Chemically integrated hybrid nanostructures of Fe2O3/holey graphene frameworks (Fe2O3/HGF) nanocomposites have been successfully synthesized via a glycerol activated process. Defected graphene oxides were first etched by a certain volume of hydrogen peroxide. Subsequently, multi-dimensionally nanosized Fe2O3 particles were generated and anchored on the defected graphene layers. Based on this method, the ability in synthesizing the exquisitely tune Fe2O3 nanoparticles with highly controllable nanostructures and desirable properties is demonstrated, ranging from zero-dimensional quantum dots (similar to 4.42 nm) to one-dimensional nanorods, and eventually to two-dimensional nanosheets. As anodes for lithium-ion batteries, these hybrid Fe2O3/holey graphene frameworks electrodes exhibit excellent cyclic stability at 1 A g(-1) after 500 cycles (73.59 mAh g(-1) for quantum dots Fe2O3/HGF electrodes, 695.4 mAh g(-1) for nanosheets Fe2O3/HGF electrodes and 805.6 mAh g(-1) for nanorods Fe2O3/HGF electrodes, respectively) and specific capacity retention at the current density of 4 A g(-1) (427.6 mAh g(-1) for quantum dots Fe2O3/HGF electrodes, 374.2 mAh g(-1) for nanosheets Fe2O3 /HGF electrodes and 473.5 mAh g(-1) for nanorods Fe2O3/HGF electrodes, respectively). This work reveals a facile way to modify the oxygenic defect sites of carbon-based materials, providing more attaching sites for metal oxides, and hopefully accelerating the commercialization of carbon-based nanocomposites as anodes for metal-ion batteries.
机译:Fe2O3 /多孔石墨烯骨架(Fe2O3 / HGF)纳米复合材料的化学集成杂化纳米结构已通过甘油活化工艺成功合成。首先用一定体积的过氧化氢蚀刻变形的氧化石墨烯。随后,生成了多维纳米尺寸的Fe2O3颗粒,并将其锚固在有缺陷的石墨烯层上。基于该方法,证明了合成具有高度可控纳米结构和理想性能的精细调谐Fe2O3纳米颗粒的能力,其范围从零维量子点(类似于4.42 nm)到一维纳米棒,最终到二维纳米片。 。作为锂离子电池的阳极,这些杂化的Fe2O3 /多孔石墨烯骨架电极在500次循环后对1 A g(-1)表现出出色的循环稳定性(量子点Fe2O3 / HGF电极为73.59 mAh g(-1),695.4 mAh g (-1)纳米片Fe2O3 / HGF电极和805.6 mAh g(-1)分别用于纳米棒Fe2O3 / HGF电极)和在4 A g(-1)的电流密度下的比容量保持率(427.6 mAh g(-1) )对于量子点Fe2O3 / HGF电极,纳米片Fe2O3 / HGF电极为374.2 mAh g(-1),对于纳米棒Fe2O3 / HGF电极为473.5 mAh g(-1))。这项工作揭示了一种简便的方法来修饰碳基材料的氧缺陷位点,为金属氧化物提供更多的附着位点,并有望加速作为金属离子电池阳极的碳基纳米复合材料的商业化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号