首页> 外文期刊>Applied Surface Science >Facile synthesis of Si@void@C nanocomposites from low-cost microsized Si as anode materials for lithium-ion batteries
【24h】

Facile synthesis of Si@void@C nanocomposites from low-cost microsized Si as anode materials for lithium-ion batteries

机译:从低成本微量化Si的Si @镍锌复合物的浅型合成作为锂离子电池的阳极材料

获取原文
获取原文并翻译 | 示例

摘要

High-capacity anodes, such as Si, are much more attractive than graphite for next generation lithium-ion batteries (LIBs) due to their high theoretical storage capacity. However, successful practical applications of Si anodes in high energy density LIBs are hindered by the huge volume change during cycling, which causes the active material pulverization and unstable solid electrolyte interphase films. In this study, we successfully synthesized Si@void@C nanocomposites from commercial low-cost microsized Si via a combination of facile high-energy mechanical milling, resorcinol-formaldehyde resin coating and sodium hydroxide etching. The as-prepared Si@void@C consists of nanosized Si particles fully embedded into mesoporous carbon shells with abundant voids. The Si@void@C anodes exhibit a high reversible capacity of 1088 mAh g(-1) over 300 cycles at a rate of 500 mA g(-1). Even at a much higher current density of 8 A g(-1), the Si@void@C anodes can still deliver a high reversible capacity of 714 mAh g(-1). These outstanding performances are assigned to the nanosized Si that is able to alleviate mechanical strain, and the buffering effect of mesoporous carbon shells as well as abundant voids for Si volume expansion. The synthesis process is simple, scalable, and cost-effective, providing a promising alternative way to large-scale production of inexpensive high-performance silicon-based materials for next-generation LIBs.
机译:由于其高理论储存能力,高容量阳极(例如Si)比下一代锂离子电池(LIBS)更具吸引力。然而,通过循环期间的巨大体积变化阻碍了Si阳极在高能量密度Lib中的成功实际应用,这导致活性材料粉碎和不稳定的固体电解质互相膜。在这项研究中,我们通过容易高能机械铣削,间苯二酚 - 甲醛树脂涂层和氢氧化钠蚀刻成功地从商业低成本微量微化Si中合成了Si @ Void @ C纳米复合材料。制备的Si @ Void @ C由纳米化Si颗粒完全嵌入中孔碳壳中,具有丰富的空隙。 Si @ void @ C阳极在500mA g(-1)的速率下表现出超过300个循环的1088mAhg(-1)的高可逆容量。即使在8A G(-1)的电流密度高得多,Si @ void @ C阳极仍然可以提供714 Mah G(-1)的高可逆容量。这些突出的性能被分配给能够缓解机械菌株的纳米SI,以及中孔碳壳的缓冲效果以及Si体积膨胀的丰富空隙。合成过程简单,可扩展性和成本效益,为下一代Libs提供了大规模生产的大规模生产的有希望的替代方法。

著录项

  • 来源
    《Applied Surface Science》 |2019年第15期|287-295|共9页
  • 作者单位

    Huazhong Univ Sci & Technol Sch Mat Sci & Engn State Key Lab Mat Proc & Die & Mould Technol Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci & Technol Sch Mat Sci & Engn State Key Lab Mat Proc & Die & Mould Technol Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci & Technol Sch Mat Sci & Engn State Key Lab Mat Proc & Die & Mould Technol Wuhan 430074 Hubei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Silicon, anodes; Low cost; Milling; Lithium-ion batteries; Microsized;

    机译:硅;阳极;低成本;铣削;锂离子电池;微化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号